In-depth performance analysis of an EEG based neonatal seizure detection algorithm

被引:20
作者
Mathieson, S. [1 ,2 ]
Rennie, J. [1 ,2 ]
Livingstone, V. [2 ]
Temko, A. [2 ,3 ]
Low, E. [2 ]
Pressler, R. M. [4 ]
Boylan, G. B. [2 ]
机构
[1] UCL, Inst Womens Hlth, Acad Res Dept Neonatol, London, England
[2] Univ Coll Cork, Dept Paediat & Child Hlth, Irish Ctr Fetal & Neonatal Translat Res, Neonatal Brain Res Grp, Cork, Ireland
[3] Univ Coll Cork, Dept Elect & Elect Engn, Cork, Ireland
[4] Great Ormond St Hosp Sick Children, Dept Clin Neurophysiol, Great Ormond St, London WC1N 3JH, England
基金
英国惠康基金; 爱尔兰科学基金会;
关键词
Automated seizure detection; Neonatal seizures; BURDEN; SYSTEM;
D O I
10.1016/j.clinph.2016.01.026
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: To describe a novel neurophysiology based performance analysis of automated seizure detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures and causes of false detections to identify areas for algorithmic improvement. Methods: EEGs of 20 term neonates were recorded (10 seizure, 10 non-seizure). Seizures were annotated by an expert and characterized using a novel set of 10 criteria. Methods: ANSeR seizure detection algorithm (SDA) seizure annotations were compared to the expert to derive detected and non-detected seizures at three SDA sensitivity thresholds. Differences in seizure characteristics between groups were compared using univariate and multivariate analysis. False detections were characterized. Results: The expert detected 421 seizures. The SDA at thresholds 0.4, 0.5, 0.6 detected 60%, 54% and 45% of seizures. At all thresholds, multivariate analyses demonstrated that the odds of detecting seizure increased with 4 criteria: seizure amplitude, duration, rhythmicity and number of EEG channels involved at seizure peak. Major causes of false detections included respiration and sweat artefacts or a highly rhythmic background, often during intermediate sleep. Conclusion: This rigorous analysis allows estimation of how key seizure features are exploited by SDAs. Significance: This study resulted in a beta version of ANSeR with significantly improved performance. (C) 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd.
引用
收藏
页码:2246 / 2256
页数:11
相关论文
共 18 条
[1]   Automated neonatal seizure detection: A multistage classification system through feature selection basedon relevance and redundancy analysis [J].
Aarabi, A ;
Wallois, F ;
Grebe, R .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (02) :328-340
[2]   Seizure detection in the neonatal EEG with synchronization likelihood [J].
Altenburg, J ;
Vermeulen, RJ ;
Strijers, RLM ;
Fetter, WR ;
Stam, CJ .
CLINICAL NEUROPHYSIOLOGY, 2003, 114 (01) :50-55
[3]   Detection of subclinical electroencephalographic seizure patterns with multichannel amplitude-integrated EEG in full-term neonates [J].
Bourez-Swart, Mireille D. ;
van Rooij, Linda ;
Rizzo, Cristiano ;
de Vries, Linda S. ;
Toet, Mona C. ;
Gebbink, Tineke A. ;
Ezendam, Anja G. J. ;
van Huffelen, Alexander C. .
CLINICAL NEUROPHYSIOLOGY, 2009, 120 (11) :1916-1922
[4]   An international survey of EEG use in the neonatal intensive care unit [J].
Boylan, G. B. ;
Burgoyne, L. ;
Moore, C. ;
O'Flaherty, B. ;
Rennie, J. M. .
ACTA PAEDIATRICA, 2010, 99 (08) :1150-1155
[5]   SPATIAL AND TEMPORAL CHARACTERISTICS OF NEONATAL SEIZURES [J].
BYE, AME ;
FLANAGAN, D .
EPILEPSIA, 1995, 36 (10) :1009-1016
[6]   Automated neonatal seizure detection mimicking a human observer reading EEG [J].
Deburchgraeve, W. ;
Cherian, P. J. ;
De Vos, M. ;
Swarte, R. M. ;
Blok, J. H. ;
Visser, G. H. ;
Govaert, P. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (11) :2447-2454
[7]   Clinical Neonatal Seizures are Independently Associated with Outcome in Infants at Risk for Hypoxic-Ischemic Brain Injury [J].
Glass, Hannah C. ;
Glidden, David ;
Jeremy, Rita J. ;
Barkovich, A. James ;
Ferriero, Donna M. ;
Miller, Steven P. .
JOURNAL OF PEDIATRICS, 2009, 155 (03) :318-323
[8]   Cooling and seizure burden in term neonates: an observational study [J].
Low, Evonne ;
Boylan, Geraldine B. ;
Mathieson, Sean R. ;
Murray, Deirdre M. ;
Korotchikova, Irina ;
Stevenson, Nathan J. ;
Livingstone, Vicki ;
Rennie, Janet M. .
ARCHIVES OF DISEASE IN CHILDHOOD-FETAL AND NEONATAL EDITION, 2012, 97 (04) :F267-F272
[9]   Validation of an automated seizure detection algorithm for term neonates [J].
Mathieson, Sean R. ;
Stevenson, Nathan J. ;
Low, Evonne ;
Marnane, William P. ;
Rennie, Janet M. ;
Temko, Andrey ;
Lightbody, Gordon ;
Boylan, Geraldine B. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) :156-168
[10]   A Multistage System for the Automated Detection of Epileptic Seizures in Neonatal Electroencephalography [J].
Mitra, Joyeeta ;
Glover, John R. ;
Ktonas, Periklis Y. ;
Kumar, Arun Thitai ;
Mukherjee, Amit ;
Karayiannis, Nicolaos B. ;
Frost, James D., Jr. ;
Hrachovy, Richard A. ;
Mizrahi, Eli M. .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2009, 26 (04) :218-226