Grating Lobe Suppression in Ultrawideband Circularly Polarized Planar Array Based on 2 x 2 Irregular Sequential Rotated Subarray (ISRS)

被引:0
作者
Peng, Yang [1 ]
Liu, Yanhui [1 ]
Chen, Shu-Lin [2 ]
Chen, Liyang [1 ]
Liu, Haiwen [3 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Zhejiang, Peoples R China
[2] Univ Technol Sydney UTS, Global Big Data Technol Ctr, Ultimo, NSW 2007, Australia
[3] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 06期
关键词
Circularly polarized (CP) planar array; element rotation; grating lobe suppression; irregular sequential rotated subarray (ISRS); ultrawideband (UWB); RADAR;
D O I
10.1109/LAWP.2024.3369082
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a novel technique to produce desired circularly polarized (CP) pencil beams at entire working frequency band for ultrawideband (UWB) planar array while suppressing grating lobes in pencil beams at high-frequency band. The approach is based on a 2 x 2 irregular sequential rotated subarray (ISRS) configuration, using UWB linearly polarized elements. The synthesis procedure involves optimizing initial element rotation angle of each ISRS, while ensuring that the rotation interval of pi/2 is still maintained between neighboring elements of each subarray. The phase term applied to the array elements is determined by the contribution of the phase associated with rotation. The proposed technique suppresses grating lobes in the obtained patterns at high-frequency band more effectively than the sequential rotation technique (SRT) while maintaining a simple sequential phase feeding network compared with the random SRT. Finally, one typical case of synthesizing pencil beam with a planar rotatedVivaldi array is presented to confirm the benefits of the proposed technique.
引用
收藏
页码:1764 / 1768
页数:5
相关论文
共 28 条
  • [1] [Anonymous], 2008, Two-axis/Four-Axis stage controller, SHOT-202 & SHOT-204MS user manual
  • [2] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [3] On the Opportunities and Challenges in Microwave Medical Sensing and Imaging
    Chandra, Rohit
    Zhou, Huiyuan
    Balasingham, Ilangko
    Narayanan, Ram M.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) : 1667 - 1682
  • [4] Incoherent Point Spread Function Estimation and Multipoint Deconvolution for Active Incoherent Millimeter-Wave Imaging
    Colon-Berrios, Jorge R.
    Vakalis, Stavros
    Chen, Daniel
    Nanzer, Jeffrey A.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (06) : 800 - 803
  • [5] Foucart S., 2013, MATH INTRO COMPRESSI, V2013th, DOI 10.1007/978-0-8176-4948-7
  • [6] Golub G, 2012, Matrix Computations, Matrix Computations
  • [7] Goodman J.W., 2005, Introduction to Fourier Optics, V3rd, DOI DOI 10.1117/1.601121
  • [8] Hansen P.C., 2010, Discrete Inverse Problems: Insight and Algorithms, DOI [10.1137/1.9780898718836, DOI 10.1137/1.9780898718836]
  • [9] THz sparse periodic array imaging system using compressed sensing
    Hu, Shaoqing
    Shu, Chao
    Alfadhl, Yasir
    Chen, Xiaodong
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2020, 14 (11) : 1157 - 1161
  • [10] W Band Imaging System Using Linear Sparse Periodic Antenna Array and Compressive Sensing for Personnel Screening
    Hu, Shaoqing
    Shu, Chao
    Alfadhl, Yasir
    Chen, Xiaodong
    [J]. IEEE ACCESS, 2019, 7 : 173603 - 173611