A Novel Data-Driven Physical Iterative Modeling Approach and Its Application in Quantum Instrumentation

被引:4
作者
Qin, Bodong [1 ,2 ]
Wang, Zhuo [3 ,4 ]
Fan, Wenfeng [3 ,4 ,5 ,6 ]
Wang, Ruigang [1 ]
Li, Feng [3 ,4 ,5 ,6 ]
Quan, Wei [3 ,4 ,5 ,6 ]
机构
[1] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[2] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[3] Beihang Univ, Inst Large Scale Sci Facil, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[4] Beihang Univ, Ctr Zero Magnet Field Sci, Beijing 100191, Peoples R China
[5] Hefei Natl Lab, Hefei 230088, Peoples R China
[6] Natl Inst Extremely Weak Magnet Field Infrastruct, Hangzhou 310051, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2024年 / 54卷 / 09期
基金
中国国家自然科学基金;
关键词
Mathematical models; Instruments; Atoms; Quantum system; Systems modeling; Measurement by laser beam; Magnetometers; Data-driven; optically pumped magnetometer (OPM); parameter identification; quantum instrumentation; spin-exchange relaxation-free comagnetometer (SERFCM);
D O I
10.1109/TSMC.2024.3408872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work is the first to solve the data-driven modeling problem for quantum instrumentation and enables the model built is interpretable. First, a data-driven physical iteration (DPI) modeling approach is proposed to solve the modeling problem of a complex physical system with nonlinear characteristics based on the dynamic behavior of a quantum system described by the phenomenological rate equation. Second, the proposed DPI modeling approach incorporates the fast sampling technique, which is proved feasible by the Taylor mean value theorem, to solve the modeling problem of a nonautonomous system. Third, the convergence of the proposed approach is proved by the least squares criterion and the law of large numbers. Finally, the DPI modeling approach is deployed in the optically pumped magnetometer (OPM) and spin-exchange relaxation-free comagnetometer (SERFCM), the physical parameters of the system are estimated while the quantum instrumentation modeling is completed. Numerical simulations and practical experiments support the theoretical results.
引用
收藏
页码:5667 / 5679
页数:13
相关论文
共 35 条
[1]  
Ben-Israel A., 2003, Generalized Inverses: Theory and Applications, V2
[2]   Measuring functional connectivity with wearable MEG [J].
Boto, Elena ;
Hill, Ryan M. ;
Rea, Molly ;
Holmes, Niall ;
Seedat, Zelekha A. ;
Leggett, James ;
Shah, Vishal ;
Osborne, James ;
Bowtell, Richard ;
Brookes, Matthew J. .
NEUROIMAGE, 2021, 230
[3]   Nuclear Matrix Elements for Tests of Local Lorentz Invariance Violation [J].
Brown, B. A. ;
Bertsch, G. F. ;
Robledo, L. M. ;
Romalis, M. V. ;
Zelevinsky, V. .
PHYSICAL REVIEW LETTERS, 2017, 119 (19)
[4]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[5]  
Dekking F. M., 2005, A Modern Introduction to Probability and Statistics: Understanding Why and How, V1st ed.
[6]   Sensor drift fault diagnosis for chiller system using deep recurrent canonical correlation analysis and k-nearest neighbor classifier [J].
Gao, Long ;
Li, Donghui ;
Yao, Lele ;
Gao, Yanan .
ISA TRANSACTIONS, 2022, 122 :232-246
[7]   Data-driven models for ground and excited states for Single Atoms on Ceria [J].
Geiger, Julian ;
Sabadell-Rendon, Albert ;
Daelman, Nathan ;
Lopez, Nuria .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[8]   A CMOS-integrated quantum sensor based on nitrogen-vacancy centres [J].
Kim, Donggyu ;
Ibrahim, Mohamed I. ;
Foy, Christopher ;
Trusheim, Matthew E. ;
Han, Ruonan ;
Englund, Dirk R. .
NATURE ELECTRONICS, 2019, 2 (07) :284-289
[9]   A subfemtotesla multichannel atomic magnetometer [J].
Kominis, IK ;
Kornack, TW ;
Allred, JC ;
Romalis, MV .
NATURE, 2003, 422 (6932) :596-599
[10]   Nuclear spin gyroscope based on an atomic comagnetometer [J].
Kornack, TW ;
Ghosh, RK ;
Romalis, MV .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)