On the spectral radius of graphs without a gem

被引:4
作者
Zhang, Yanting [1 ,2 ]
Wang, Ligong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Xian budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gem-free graphs; Spectral radius; Extremal graph; BOUNDS;
D O I
10.1016/j.disc.2024.114171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The gem is the 5-vertex graph consisting of a 4-vertex path plus a vertex adjacent to each vertex of the path. A graph is said to be gem-free if it does not contain gem as a subgraph. In this paper, we consider the spectral extremal problem for gem-free graphs with given size. The maximum spectral radius of gem-free graphs with size m > 11 is obtained, and the unique corresponding extremal graph is determined. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:7
相关论文
共 50 条
[41]   ON THE SIZE, SPECTRAL RADIUS, DISTANCE SPECTRAL RADIUS AND FRACTIONAL MATCHINGS IN GRAPHS [J].
LI, Shuchao ;
Miao, Shujing ;
Zhang, Minjie .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (02) :187-199
[42]   Signless Laplacian spectral radius of graphs without short cycles or long cycles [J].
Chen, Wenwen ;
Wang, Bing ;
Zhai, Mingqing .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 645 :123-136
[43]   First zagreb spectral radius of unicyclic graphs and trees [J].
Das, Parikshit ;
Das, Kinkar Chandra ;
Mondal, Sourav ;
Pal, Anita .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (01)
[44]   Extremal problems for the p-spectral radius of graphs [J].
Kang, Liying ;
Nikiforov, Vladimir .
ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03)
[45]   On the spectral radius of bipartite graphs which are nearly complete [J].
Das, Kinkar Chandra ;
Cangul, Ismail Naci ;
Maden, Ayse Dilek ;
Cevik, Ahmet Sinan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[46]   On the spectral radius of graphs with given maximum degree and girth [J].
Ai, Jiangdong ;
Im, Seonghyuk ;
Kim, Jaehoon ;
Lee, Hyunwoo ;
Suil, O. ;
Zhang, Liwen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 691 :182-195
[47]   The minimum spectral radius of graphs with a given independence number [J].
Xu, Mimi ;
Hong, Yuan ;
Shu, Jinlong ;
Zhai, Mingqing .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :937-945
[48]   ON THE DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS AND DIGRAPHS [J].
Li, Dan ;
Wang, Guoping ;
Meng, Jixiang .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 :438-446
[49]   Spectral Radius of Hamiltonian Planar Graphs and Outerplanar Graphs [J].
周建 ;
林翠琴 ;
胡冠章 .
Tsinghua Science and Technology, 2001, (04) :350-354
[50]   ON THE ABC SPECTRAL RADIUS OF CACTUS GRAPHS [J].
Du, Zhibin ;
Zhou, Bo .
OPERATORS AND MATRICES, 2023, 17 (01) :57-68