On the spectral radius of graphs without a gem

被引:1
作者
Zhang, Yanting [1 ,2 ]
Wang, Ligong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Xian budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gem-free graphs; Spectral radius; Extremal graph; BOUNDS;
D O I
10.1016/j.disc.2024.114171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The gem is the 5-vertex graph consisting of a 4-vertex path plus a vertex adjacent to each vertex of the path. A graph is said to be gem-free if it does not contain gem as a subgraph. In this paper, we consider the spectral extremal problem for gem-free graphs with given size. The maximum spectral radius of gem-free graphs with size m > 11 is obtained, and the unique corresponding extremal graph is determined. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] On the Ace-spectral radius of connected graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    Das, Kinkar Chandra
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
  • [22] Spectral radius and fractional [a, b]-factor of graphs
    Li, Yuang
    Fan, Dandan
    Zhu, Yinfen
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 715 : 32 - 45
  • [23] A note on spectral radius and degree deviation in graphs
    Zhang, Wenqian
    [J]. DISCRETE MATHEMATICS, 2021, 344 (08)
  • [24] Spectral radius and Hamiltonicity of graphs
    Fiedler, Miroslav
    Nikiforov, Vladimir
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2170 - 2173
  • [25] Cleavages of graphs: the spectral radius
    de la Pena, Jose A.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07) : 641 - 649
  • [26] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    [J]. UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [27] The Aα-spectral radius of dense graphs
    Liu, Muhuo
    Chen, Chaohui
    Guo, Shu-Guang
    Peng, Jiarong
    Chen, Tianyuan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06) : 1044 - 1053
  • [28] THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 835 - 847
  • [29] SPECTRAL RADIUS AND HAMILTONICITY OF GRAPHS
    Yu, Guidong
    Fang, Yi
    Fan, Yizheng
    Cai, Gaixiang
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 951 - 974
  • [30] Spectral radius and matchings in graphs
    Suil, O.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 316 - 324