Peptide Nucleic Acids: From Origami to Editing

被引:6
作者
Carson, Liam M. [1 ]
Watson, Emma E. [1 ]
机构
[1] Univ Adelaide, Dept Chem, North Terrace, Adelaide, SA 5005, Australia
来源
CHEMPLUSCHEM | 2024年 / 89卷 / 11期
关键词
Peptide nucleic acid; PNA; Biomolecules; Nucleic acids; DOUBLE-STRANDED DNA; THIAZOLE ORANGE; PNA; RNA; RECOGNITION; BIOSENSORS; STABILITY; ANTISENSE; GROWTH; PROBE;
D O I
10.1002/cplu.202400305
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development. Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development. image
引用
收藏
页数:11
相关论文
共 105 条
[91]   A Peptide Nucleic Acid (PNA) Masking the miR-145-5p Binding Site of the 3′UTR of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mRNA Enhances CFTR Expression in Calu-3 Cells [J].
Sultan, Shaiq ;
Rozzi, Andrea ;
Gasparello, Jessica ;
Manicardi, Alex ;
Corradini, Roberto ;
Papi, Chiara ;
Finotti, Alessia ;
Lampronti, Ilaria ;
Reali, Eva ;
Cabrini, Giulio ;
Gambari, Roberto ;
Borgatti, Monica .
MOLECULES, 2020, 25 (07)
[92]   Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications [J].
Suparpprom, Chaturong ;
Vilaivan, Tirayut .
RSC CHEMICAL BIOLOGY, 2022, 3 (06) :648-697
[93]   Bilingual Peptide Nucleic Acids: Encoding the Languages of Nucleic Acids and Proteins in a Single Self-Assembling Biopolymer [J].
Swenson, Colin S. ;
Velusamy, Arventh ;
Argueta-Gonzalez, Hector S. ;
Heemstra, Jennifer M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (48) :19038-19047
[94]   A Biotinylated cpFIT-PNA Platform for the Facile Detection of Drug Resistance to Artemisinin in Plasmodium falciparum [J].
Tepper, Odelia ;
Appella, Daniel H. ;
Zheng, Hongchao ;
Dzikowski, Ron ;
Yavin, Eylon .
ACS SENSORS, 2024, 9 (03) :1458-1464
[95]   Cyclopentane FIT-PNAs: bright RNA sensors [J].
Tepper, Odelia ;
Zheng, Hongchao ;
Appella, Daniel H. ;
Yavin, Eylon .
CHEMICAL COMMUNICATIONS, 2021, 57 (04) :540-543
[96]   Highly-sensitive graphene field effect transistor biosensor using PNA and DNA probes for RNA detection [J].
Tian, Meng ;
Qiao, Mei ;
Shen, Congcong ;
Meng, Fanlu ;
Frank, Ludmila A. ;
Krasitskaya, Vasilisa V. ;
Wang, Tiejun ;
Zhang, Xiumei ;
Song, Ruihong ;
Li, Yingxian ;
Liu, Jianjian ;
Xu, Shicai ;
Wang, Jihua .
APPLIED SURFACE SCIENCE, 2020, 527
[97]   Silver soldering of PNA:DNA duplexes: assembly of a triple duplex from bimodal PNAs with all-C on one face [J].
Todkari, Iranna ;
Gupta, Manoj Kumar ;
Ganesh, Krishna N. .
CHEMICAL COMMUNICATIONS, 2022, 58 (25) :4083-4086
[98]   A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules [J].
Vummidi, Balayeshwanth R. ;
Farrera-Soler, Lluc ;
Daguer, Jean-Pierre ;
Dockerill, Millicent ;
Barluenga, Sofia ;
Winssinger, Nicolas .
NATURE CHEMISTRY, 2022, 14 (02) :141-+
[99]   Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy [J].
Wang, Yazhe ;
Malik, Shipra ;
Suh, Hee-Won ;
Xiao, Yong ;
Deng, Yanxiang ;
Fan, Rong ;
Huttner, Anita ;
Bindra, Ranjit S. ;
Singh, Vijender ;
Saltzman, W. Mark ;
Bahal, Raman .
SCIENCE ADVANCES, 2023, 9 (06)
[100]   MicroRNA-21 Promotes Glioblastoma Tumorigenesis by Down-regulating Insulin-like Growth Factor-binding Protein-3 (IGFBP3) [J].
Yang, Chuan He ;
Yue, Junming ;
Pfeffer, Susan R. ;
Fan, Meiyun ;
Paulus, Elena ;
Hosni-Ahmed, Amira ;
Sims, Michelle ;
Qayyum, Sohail ;
Davidoff, Andrew M. ;
Handorf, Charles R. ;
Pfeffer, Lawrence M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (36) :25079-25087