Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering

被引:17
|
作者
Huang, Tianyue [1 ]
Zeng, YuE [2 ]
Li, Chaofei [3 ]
Zhou, Zhengqing [1 ]
Xu, Jie [1 ]
Wang, Lean [1 ]
Yu, Deng-Guang [1 ]
Wang, Ke [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat & Chem, Shanghai 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, RuiJin Hosp, Sch Med, Dept Neurol,Lu Wan Branch, Shanghai 200025, Peoples R China
[3] Shanghai Jiao Tong Univ, RuiJin Hosp, Sch Med, Dept Gen Surg,Lu Wan Branch, Shanghai 200025, Peoples R China
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2024年 / 10卷 / 07期
关键词
electrospinning; nanofibers; bone tissue engineeringscaffolds; cell attachment; MESENCHYMAL STEM-CELLS; IN-VITRO; COMPOSITE SCAFFOLDS; CHITOSAN NANOFIBERS; FIBROUS SCAFFOLDS; DIFFERENTIATION; REGENERATION; HYDROGELS; SIMVASTATIN; FABRICATION;
D O I
10.1021/acsbiomaterials.4c00028
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.
引用
收藏
页码:4114 / 4144
页数:31
相关论文
共 50 条
  • [21] Conductive Polyaniline Patterns on Electrospun Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Rajzer, Izabella
    Rom, Monika
    Menaszek, Elzbieta
    Fabia, Janusz
    Kwiatkowski, Ryszard
    MATERIALS, 2021, 14 (17)
  • [22] Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering
    Chen, Guobao
    Lv, Yonggang
    CURRENT PHARMACEUTICAL DESIGN, 2015, 21 (15) : 1967 - 1978
  • [23] Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review
    Kareem, Muna M.
    Tanner, K. E.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2022, 236 (04) : 483 - 495
  • [24] Electrospun Naringin-Loaded Beaded Nanofiber with Controlled Release Property for Bone Tissue Engineering Applications
    Zhang, Qiongyue
    Zhang, Yigong
    Watts, David C.
    Almassri, Huthayfa N. S.
    Shao, Huaying
    Yang, Xue
    Ma, Yihui
    Zhang, Dan
    Wu, Xiaohong
    SCIENCE OF ADVANCED MATERIALS, 2019, 11 (10) : 1433 - 1442
  • [25] Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application
    Shrestha, Bishnu Kumar
    Mousa, Hamouda M.
    Tiwari, Arjun Prasad
    Ko, Sung Won
    Park, Chan Hee
    Kim, Cheol Sang
    CARBOHYDRATE POLYMERS, 2016, 148 : 107 - 114
  • [26] Electrospun polycaprolactone scaffolds for tissue engineering: a review
    Janmohammadi, M.
    Nourbakhsh, M. S.
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 527 - 539
  • [27] Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering
    Sundaramurthi, Dhakshinamoorthy
    Krishnan, Uma Maheswari
    Sethuraman, Swaminathan
    POLYMER REVIEWS, 2014, 54 (02) : 348 - 376
  • [28] Electrospun piezoelectric scaffolds for cardiac tissue engineering
    Gomes, Mariana Ramalho
    Ferreira, Frederico Castelo
    Sanjuan-Alberte, Paola
    BIOMATERIALS ADVANCES, 2022, 137
  • [29] Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size
    Mi, Hao-Yang
    Palumbo, SunMi
    Jing, Xin
    Turng, Lih-Sheng
    Li, Wan-Ju
    Peng, Xiang-Fang
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (07) : 1434 - 1444
  • [30] Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering
    Luetchford, Kim A.
    Chaudhuri, Julian B.
    De Bank, Paul A.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106