The stability of degenerate solitons for derivative nonlinear Schrodinger equations

被引:1
|
作者
Kim, Taegyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Derivative nonlinear Schrodinger equation; Variational methods; SOLITARY WAVE SOLUTIONS; GLOBAL WELL-POSEDNESS; ORBITAL STABILITY; INSTABILITY; EXISTENCE;
D O I
10.1016/j.jmaa.2024.128524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear Schr & ouml;dinger equation with derivative: i partial derivative(t)u + partial derivative(xx)u + i|u|(2)partial derivative(x)u + b|u|(4) u = 0, (t, x ) is an element of R x R , b >= 0. For the case b = 0, the original DNLS, Kwon and Wu [14] proved the conditional orbital stability of degenerate solitons including scaling, phase rotation, and spatial translation with a non-smallness condition, IIu(t)IIL66 > root delta. In this paper, we remove this condition for the non -positive initial energy and momentum, and we extend the stability result for b >= 0. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Revisiting asymptotic stability of solitons of nonlinear Schrodinger equations via refined profile method
    Cuccagna, Scipio
    Maeda, Masaya
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)
  • [22] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [23] Spectral Curves for the Derivative Nonlinear Schrodinger Equations
    Smirnov, Aleksandr O.
    SYMMETRY-BASEL, 2021, 13 (07):
  • [24] Dark and singular solitons to the two nonlinear Schrodinger equations
    Sulaiman, Tukur Abdulkadir
    Nuruddeen, Rahmatullah Ibrahim
    Mikail, Badamasi Bashir
    OPTIK, 2019, 186 : 423 - 430
  • [25] Asymptotic reductions and solitons of nonlocal nonlinear Schrodinger equations
    Horikis, Theodoros P.
    Frantzeskakis, Dimitrios J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (20)
  • [26] BOUND SOLITONS IN COUPLED NONLINEAR SCHRODINGER-EQUATIONS
    MALOMED, BA
    PHYSICAL REVIEW A, 1992, 45 (12): : R8321 - R8323
  • [27] Unstable gap solitons in inhomogeneous nonlinear Schrodinger equations
    Marangell, R.
    Susanto, H.
    Jones, C. K. R. T.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (04) : 1191 - 1205
  • [28] Discrete solitons for periodic discrete nonlinear Schrodinger equations
    Mai, Ali
    Zhou, Zhan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 34 - 41
  • [29] Integrable nonlocal derivative nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    Zhu, Yi
    INVERSE PROBLEMS, 2022, 38 (06)
  • [30] Integrable discretizations of derivative nonlinear Schrodinger equations
    Tsuchida, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7827 - 7847