Implicit Regularization in Deep Tucker Factorization: Low-Rankness via Structured Sparsity

被引:0
作者
Hariz, Kais [1 ,2 ]
Kadri, Hachem [1 ]
Ayache, Stephane [1 ]
Moakher, Maher [2 ]
Artieres, Thierry [1 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, LIS, Marseille, France
[2] Univ Tunis El Manar, Natl Engn Sch Tunis, LAMSIN, Tunis, Tunisia
[3] Ecole Cent Marseille, Marseille, France
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238 | 2024年 / 238卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We theoretically analyze the implicit regularization of deep learning for tensor completion. We show that deep Tucker factorization trained by gradient descent induces a structured sparse regularization. This leads to a characterization of the effect of the depth of the neural network on the implicit regularization and provides a potential explanation for the bias of gradient descent towards solutions with low multilinear rank. Numerical experiments confirm our theoretical findings and give insights into the behavior of gradient descent in deep tensor factorization.
引用
收藏
页数:20
相关论文
共 43 条
  • [31] Compressing Low Precision Deep Neural Networks Using Sparsity-Induced Regularization in Ternary Networks
    Faraone, Julian
    Fraser, Nicholas
    Gambardella, Giulio
    Blott, Michaela
    Leong, Philip H. W.
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 393 - 404
  • [32] Efficient Image Classification via Structured Low-Rank Matrix Factorization Regression
    Zhang, Hengmin
    Yang, Jian
    Qian, Jianjun
    Gao, Guangwei
    Lan, Xiangyuan
    Zha, Zhiyuan
    Wen, Bihan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1496 - 1509
  • [33] Improvement of Generalization Ability of Deep CNN via Implicit Regularization in Two-Stage Training Process
    Zheng, Qinghe
    Yang, Mingqiang
    Yang, Jiajie
    Zhang, Qingrui
    Zhang, Xinxin
    IEEE ACCESS, 2018, 6 : 15844 - 15869
  • [34] Enhancing Low-Light Color Image via L0 Regularization and Reweighted Group Sparsity
    Song, Qiang
    Liu, Hangfan
    IEEE ACCESS, 2021, 9 : 101614 - 101626
  • [35] Heterogeneous Recommendation via Deep Low-Rank Sparse Collective Factorization
    Jiang, Shuhui
    Ding, Zhengming
    Fu, Yun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) : 1097 - 1111
  • [36] WIDE ANGLE RADAR IMAGING UNDER LOW SNR VIA SPARSITY ENHANCED NON-NEGATIVE MATRIX FACTORIZATION
    Xu, Ran
    Li, Yachao
    Xing, Mengdao
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3195 - 3198
  • [37] Distributed Blind Hyperspectral Unmixing via Joint Sparsity and Low-Rank Constrained Non-Negative Matrix Factorization
    Tsinos, Christos G.
    Rontogiannis, Athanasios A.
    Berberidis, Kostas
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (02) : 160 - 174
  • [38] Low-Dose CT with Deep Learning Regularization Via Proximal Forward Backward Splitting
    Ding, Q.
    Chen, G.
    Ji, H.
    Gao, H.
    MEDICAL PHYSICS, 2020, 47 (06) : E404 - E404
  • [39] Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization
    Zeng, Dong
    Xie, Qi
    Cao, Wenfei
    Lin, Jiahui
    Zhang, Hao
    Zhang, Shanli
    Huang, Jing
    Bian, Zhaoying
    Meng, Deyu
    Xu, Zongben
    Liang, Zhengrong
    Chen, Wufan
    Ma, Jianhua
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) : 2546 - 2556
  • [40] Low-dose CT with deep learning regularization via proximal forward-backward splitting
    Ding, Qiaoqiao
    Chen, Gaoyu
    Zhang, Xiaoqun
    Huang, Qiu
    Ji, Hui
    Gao, Hao
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (12)