Implicit Regularization in Deep Tucker Factorization: Low-Rankness via Structured Sparsity

被引:0
作者
Hariz, Kais [1 ,2 ]
Kadri, Hachem [1 ]
Ayache, Stephane [1 ]
Moakher, Maher [2 ]
Artieres, Thierry [1 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, LIS, Marseille, France
[2] Univ Tunis El Manar, Natl Engn Sch Tunis, LAMSIN, Tunis, Tunisia
[3] Ecole Cent Marseille, Marseille, France
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238 | 2024年 / 238卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We theoretically analyze the implicit regularization of deep learning for tensor completion. We show that deep Tucker factorization trained by gradient descent induces a structured sparse regularization. This leads to a characterization of the effect of the depth of the neural network on the implicit regularization and provides a potential explanation for the bias of gradient descent towards solutions with low multilinear rank. Numerical experiments confirm our theoretical findings and give insights into the behavior of gradient descent in deep tensor factorization.
引用
收藏
页数:20
相关论文
共 43 条
  • [21] Wideband super-resolution imaging in Radio Interferometry via low rankness and joint average sparsity models (HyperSARA)
    Abdulaziz, Abdullah
    Dabbech, Arwa
    Wiaux, Yves
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (01) : 1230 - 1248
  • [22] Low-rank tensor recovery via non-convex regularization, structured factorization and spatio-temporal characteristics
    Yu, Quan
    Yang, Ming
    PATTERN RECOGNITION, 2023, 137
  • [23] Expectile trace regression via low-rank and group sparsity regularization
    Peng, Ling
    Tan, Xiangyong
    Xiao, Peiwen
    Rizk, Zeinab
    Liu, Xiaohui
    STATISTICS, 2023, 57 (06) : 1469 - 1489
  • [24] Accelerating Deep Neural Networks via Semi-Structured Activation Sparsity
    Grimaldi, Matteo
    Ganji, Darshan C.
    Lazarevich, Ivan
    Sah, Sudhakar
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 1171 - 1180
  • [25] Modeling and Applying Implicit Dormant Features for Recommendation via Clustering and Deep Factorization
    Kutlimuratov, Alpamis
    Abdusalomov, Akmalbek Bobomirzaevich
    Oteniyazov, Rashid
    Mirzakhalilov, Sanjar
    Whangbo, Taeg Keun
    SENSORS, 2022, 22 (21)
  • [26] Multi -task image set classification via joint representation with class -level sparsity and intra-task low -rankness
    Liu, Deyin
    Liu, Liangchen
    Tie, Yun
    Qi, Lin
    PATTERN RECOGNITION LETTERS, 2020, 132 : 99 - 105
  • [27] HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION VIA NONNEGATIVE MATRIX FACTORIZATION AND DEEP PRIOR REGULARIZATION
    Lin, Baihong
    Zhang, Yiqi
    Lin, Zengrong
    Wang, Xiaoqing
    Huang, Haifeng
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1440 - 1443
  • [28] Learning Structured Low-Rank Representation via Matrix Factorization
    Shen, Jie
    Li, Ping
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 500 - 509
  • [29] Gradient descent for deep matrix factorization: Dynamics and implicit bias towards low rank
    Chou, Hung-Hsu
    Gieshoff, Carsten
    Maly, Johannes
    Rauhut, Holger
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 68
  • [30] Multiview Spectral Clustering via Structured Low-Rank Matrix Factorization
    Wang, Yang
    Wu, Lin
    Lin, Xuemin
    Gao, Junbin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) : 4833 - 4843