A deep multimodal network for multi-task trajectory prediction

被引:7
作者
Lei, Da [1 ]
Xu, Min [2 ]
Wang, Shuaian [1 ]
机构
[1] Hong Kong Polytech Univ, Fac Business, Dept Logist & Maritime Studies, Hung Hom, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hung Hom, Hong Kong, Peoples R China
关键词
Individual trajectory; Multi-task prediction; Travel mode estimation; Manifold feature fusion; Inter-modal attention; MODEL;
D O I
10.1016/j.inffus.2024.102597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing the complexity of multi-task trajectory prediction, this study introduces a novel Deep Multimodal Network (DMN), which integrates a shared feature extractor and a multi-task prediction module with translational encoders to capture both intra-modal and inter-modal dependencies. Unlike traditional models that focus on single-task forecasting, our DMN efficiently and simultaneously predicts multiple trajectory outputs-locations, travel times, and transportation modes. Compared to baseline models including LSTM and Seq2Seq using a real-world dataset, the DMN demonstrates superior performance, reducing the location prediction error by 67% and the travel time error by 69%, while achieving an accuracy of 91. 44% in travel mode prediction. Statistical tests confirm the significance of these enhancements. Ablation studies further validate the critical role of modeling complex dependencies, highlighting the potential of DMN to advance intelligent and sustainable transportation systems.
引用
收藏
页数:13
相关论文
共 42 条
[11]   Minimum entropy rate-improved trip-chain method for origin-destination estimation using smart card data [J].
Lei, Da ;
Chen, Xuewu ;
Cheng, Long ;
Zhang, Lin ;
Wang, Pengfei ;
Wang, Kailai .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 130
[12]   Inferring temporal motifs for travel pattern analysis using large scale smart card data [J].
Lei, Da ;
Chen, Xuewu ;
Cheng, Long ;
Zhang, Lin ;
Ukkusuri, Satish, V ;
Witlox, Frank .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 120
[13]   An improved searching algorithm for indoor trajectory reconstruction [J].
Li, Min ;
Fu, Jingjing ;
Zhang, Yanfang ;
Zhang, Zhujun ;
Wang, Siye ;
Kong, Huafeng ;
Mao, Rui .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (11)
[14]   TrajFormer: Efficient Trajectory Classification with Transformers [J].
Liang, Yuxuan ;
Ouyang, Kun ;
Wang, Yiwei ;
Liu, Xu ;
Chen, Hongyang ;
Zhang, Junbo ;
Zheng, Yu ;
Zimmermann, Roger .
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, :1229-1237
[15]  
Liang YX, 2021, PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, P1498
[16]   Spatio-Temporal GRU for Trajectory Classification [J].
Liu, Hong-Bin ;
Wu, Hao ;
Sun, Weiwei ;
Lee, Ickjai .
2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, :1228-1233
[17]   Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer [J].
Lustberg, Tim ;
van Soest, Johan ;
Gooding, Mark ;
Peressutti, Devis ;
Aljabar, Paul ;
van der Stoep, Judith ;
van Elmpt, Wouter ;
Dekker, Andre .
RADIOTHERAPY AND ONCOLOGY, 2018, 126 (02) :312-317
[18]   A Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction [J].
Ma, Lan ;
Tian, Shan .
IEEE ACCESS, 2020, 8 :134668-134680
[19]  
Mathew W, 2012, UBICOMP'12: PROCEEDINGS OF THE 2012 ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING, P911
[20]   A review of travel time estimation and forecasting for Advanced Traveller Information Systems [J].
Mori, Usue ;
Mendiburu, Alexander ;
Alvarez, Maite ;
Lozano, Jose A. .
TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2015, 11 (02) :119-157