On the Prime Radical of Nearrings Which is Kurosh-Amitsur

被引:0
作者
Lakshminarayana, Kilaru J. [1 ]
Prasad, V. B. V. N. [1 ]
Ravi, Srinivasa Rao [2 ]
Ramakrishna, A. V. [3 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept Engn Math, Vaddeswaram 522502, Andhra Pradesh, India
[2] Acharya Nagarjuna Univ, Univ Coll Sci, Dept Math, Nagarjuna Nagar 522510, Andhra Pradesh, India
[3] R V R & J C Coll Engn, Dept Math, Chowdavaram 522019, Andhra Pradesh, India
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 02期
关键词
Near-ring; N-group; prime N-groups of type 2; Prime radical of type 2;
D O I
10.29020/nybg.ejpam.v17i2.5032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A prime radical of near -rings is introduced by defining a new class of prime modules of near -rings. It is a generalization of the Prime radical of rings. Properties of the radical are studied. It is established that this radical is a Kurosh-Amitsur radical of near -rings.
引用
收藏
页码:1206 / 1212
页数:7
相关论文
共 7 条
  • [1] A KUROSH-AMITSUR PRIME RADICAL FOR NEAR-RINGS
    BOOTH, GL
    GROENEWALD, NJ
    VELDSMAN, S
    [J]. COMMUNICATIONS IN ALGEBRA, 1990, 18 (09) : 3111 - 3122
  • [2] Daunsr J., 1987, Tartu Rikkl. Ul. Toitmetised, V764, P23
  • [3] Kaarli K., 1978, Reine Angew.Math, V298, P156
  • [4] Pilz G.F., 1983, Near-rings, V2nd
  • [5] Prasad K. Siva, 2021, Afrika Matematika, V32, P1333
  • [6] Right representations of right near-ring radicals
    Rao, Ravi Srinivasa
    Veldsman, Stefan
    [J]. AFRIKA MATEMATIKA, 2019, 30 (1-2) : 37 - 52
  • [7] A module theoretic characterization of the prime radical of near-rings
    Ravi S.R.
    Koduru N.K.R.
    Korrapati S.P.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (1): : 51 - 60