Earthfarseer: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model

被引:0
|
作者
Wu, Hao [1 ]
Liang, Yuxuan [2 ]
Xiong, Wei [3 ]
Zhou, Zhengyang [1 ]
Huang, Wei [3 ]
Wang, Shilong [1 ]
Wang, Kun [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Hong Kong Univ Sci & Technol, Guangzhou, Peoples R China
[3] Univ Tokyo, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficiently modeling spatio-temporal (ST) physical processes and observations presents a challenging problem for the deep learning community. Many recent studies have concentrated on meticulously reconciling various advantages, leading to designed models that are neither simple nor practical. To address this issue, this paper presents a systematic study on existing shortcomings faced by off-the-shelf models, including lack of local fidelity, poor prediction performance over long time-steps, low scalability, and inefficiency. To systematically address the aforementioned problems, we propose an EarthFarseer, a concise framework that combines parallel local convolutions and global Fourier-based transformer architectures, enabling dynamically capture the local-global spatial interactions and dependencies. EarthFarseer also incorporates a multi-scale fully convolutional and Fourier architectures to efficiently and effectively capture the temporal evolution. Our proposal demonstrates strong adaptability across various tasks and datasets, with fast convergence and better local fidelity in long time-steps predictions. Extensive experiments and visualizations over eight human society physical and natural physical datasets demonstrates the state-of-the-art performance of EarthFarseer. We release our code at https://github.com/easylearningscores/EarthFarseer.
引用
收藏
页码:15906 / 15914
页数:9
相关论文
共 50 条
  • [31] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [32] Modeling spatio-temporal field evolution
    A. Borštnik Bračič
    I. Grabec
    E. Govekar
    The European Physical Journal B, 2009, 69 : 529 - 538
  • [33] Spatio-temporal modeling in the farmyard domain
    Magee, DR
    Boyle, RD
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2000, 1899 : 83 - 95
  • [34] Modeling spatio-temporal field evolution
    Borstnik Bracic, A.
    Grabec, I.
    Govekar, E.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (04): : 529 - 538
  • [35] Spatio-temporal BRDF: Modeling and synthesis
    Meister, Daniel
    Pospisil, Adam
    Sato, Imari
    Bittner, Jiri
    COMPUTERS & GRAPHICS-UK, 2021, 97 : 279 - 291
  • [36] Spatio-Temporal Modeling of Legislation and Votes
    Wang, Eric
    Salazar, Esther
    Dunson, David
    Carin, Lawrence
    BAYESIAN ANALYSIS, 2013, 8 (01): : 233 - 267
  • [37] Spatio-Temporal Modeling of Electric Loads
    Shi, Jie
    Liu, Yang
    Yu, Nanpeng
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [38] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Johan Lindström
    Adam A. Szpiro
    Paul D. Sampson
    Assaf P. Oron
    Mark Richards
    Tim V. Larson
    Lianne Sheppard
    Environmental and Ecological Statistics, 2014, 21 : 411 - 433
  • [39] A Semantic Model for Computer-Based Spatio-Temporal Systems
    Hummel, Benjamin
    16TH ANNUAL IEEE INTERNATIONAL CONFERENCE AND WORKSHOP ON THE ENGINEERING OF COMPUTER BASED SYSTEMS, PROCEEDINGS, 2009, : 156 - 165
  • [40] New model diagnostics for spatio-temporal systems in epidemiology and ecology
    Lau, Max S. Y.
    Marion, Glenn
    Streftaris, George
    Gibson, Gavin J.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (93)