Earthfarseer: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model

被引:0
|
作者
Wu, Hao [1 ]
Liang, Yuxuan [2 ]
Xiong, Wei [3 ]
Zhou, Zhengyang [1 ]
Huang, Wei [3 ]
Wang, Shilong [1 ]
Wang, Kun [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Hong Kong Univ Sci & Technol, Guangzhou, Peoples R China
[3] Univ Tokyo, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficiently modeling spatio-temporal (ST) physical processes and observations presents a challenging problem for the deep learning community. Many recent studies have concentrated on meticulously reconciling various advantages, leading to designed models that are neither simple nor practical. To address this issue, this paper presents a systematic study on existing shortcomings faced by off-the-shelf models, including lack of local fidelity, poor prediction performance over long time-steps, low scalability, and inefficiency. To systematically address the aforementioned problems, we propose an EarthFarseer, a concise framework that combines parallel local convolutions and global Fourier-based transformer architectures, enabling dynamically capture the local-global spatial interactions and dependencies. EarthFarseer also incorporates a multi-scale fully convolutional and Fourier architectures to efficiently and effectively capture the temporal evolution. Our proposal demonstrates strong adaptability across various tasks and datasets, with fast convergence and better local fidelity in long time-steps predictions. Extensive experiments and visualizations over eight human society physical and natural physical datasets demonstrates the state-of-the-art performance of EarthFarseer. We release our code at https://github.com/easylearningscores/EarthFarseer.
引用
收藏
页码:15906 / 15914
页数:9
相关论文
共 50 条
  • [21] Identification of multiscale spatio-temporal dynamical systems using a wavelet multiresolution analysis
    Guo, L. Z.
    Billings, S. A.
    Coca, D.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (11) : 1115 - 1126
  • [22] Estimation of spatial derivatives and identification cation of continuous spatio-temporal dynamical systems
    Guo, L. Z.
    Billings, S. A.
    Wei, H. L.
    INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (09) : 1118 - 1135
  • [23] Spatio-temporal Event Modeling and Ranking
    Li, Xuefei
    Cai, Hongyun
    Huang, Zi
    Yang, Yang
    Zhou, Xiaofang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2013, PT II, 2013, 8181 : 361 - 374
  • [24] Spatio-temporal Modeling of Mosquito Distribution
    Dumont, Y.
    Dufourd, C.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [25] Modeling consistency of spatio-temporal graphs
    Del Mondo, G.
    Rodriguez, M. A.
    Claramunt, C.
    Bravo, L.
    Thibaud, R.
    DATA & KNOWLEDGE ENGINEERING, 2013, 84 : 59 - 80
  • [26] Spatio-temporal BRDF: Modeling and synthesis
    Meister, Daniel
    Pospíšil, Adam
    Sato, Imari
    Bittner, Jiří
    Computers and Graphics (Pergamon), 2021, 97 : 279 - 291
  • [27] Distributed spatio-temporal modeling and simulation
    Schulze, T
    Wytzisk, A
    Simonis, I
    Raape, U
    PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 695 - 703
  • [28] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433
  • [29] Semiparametric spatio-temporal frailty modeling
    Banerjee, S
    Carlin, BP
    ENVIRONMETRICS, 2003, 14 (05) : 523 - 535
  • [30] Spatio-Temporal Modeling of Grasping Actions
    Romero, Javier
    Feix, Thomas
    Kjellstrom, Hedvig
    Kragic, Danica
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,