Massive MIMO Signal Detection using SRAM-based In-Memory Computing

被引:0
作者
Kavishwar, Mihir [1 ]
Shanbhag, Naresh [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
关键词
massive MIMO; in-memory computing; hardware accelerator; zero forcing; minimum mean square error;
D O I
10.1109/ISCAS58744.2024.10558118
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper explores the use of static random access memory (SRAM)-based in-memory computing (IMC) architectures as signal detectors in massive multi-input multi-output (MIMO) wireless receivers. SRAM-based IMCs have demonstrated significant benefits in terms of energy efficiency and compute density over digital accelerators for deep learning workloads. However, their limited compute accuracy has hindered their application in other domains. Employing system-level models of the wireless channel and behavioral models of an SRAM -based IMC in 28nm CMOS process, we show that a symbol error rate (SER) < 10(-4) can be achieved for SNR > 19 dB when implementing zero forcing (ZF) or linear minimum mean square error (LMMSE) detectors on a SRAM-based IMC for a 128 x 16 MIMO uplink.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A Zero-Skipping Reconfigurable SRAM In-Memory Computing Macro with Binary-Searching ADC
    Yu, Chengshuo
    Chai, Kevin Tshun Chuan
    Kim, Tony Tae-Hyoung
    Kim, Bongjin
    IEEE 51ST EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2021), 2021, : 131 - 134
  • [32] Signal Detection Algorithms for Massive MIMO
    Wang Xiaotian
    Yang Longxiang
    MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 2063 - +
  • [33] Zero-Skipping Reconfigurable SRAM In-Memory Computing Macro with Binary-Searching ADC
    Yu, Chengshuo
    Chai, Kevin Tshun Chuan
    Kim, Tony Tae-Hyoung
    Kim, Bongjin
    ESSCIRC 2021 - IEEE 47TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2021, : 131 - 134
  • [34] A real-time and energy-efficient SRAM with mixed-signal in-memory computing near CMOS sensors
    Diaz-Madrid, Jose-Angel
    Domenech-Asensi, Gines
    Ruiz-Merino, Ramon
    Zapata-Perez, Juan-Francisco
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [35] Design of reliable and fast Schmitt trigger 10T SRAM cells using in-memory computing
    Rani, Mucherla Usha
    Reddy, N. Siva Sankara
    Naik, B. Rajendra
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [36] Low Complexity Signal Detection for Massive-MIMO Systems
    Shafivulla, Sayyed
    Patel, Aaqib
    Khan, Mohammed Zafar Ali
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (09) : 1467 - 1470
  • [37] Adaptive Neural Signal Detection for Massive MIMO
    Khani, Mehrdad
    Alizadeh, Mohammad
    Hoydis, Jakob
    Fleming, Phil
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) : 5635 - 5648
  • [38] A 12T SRAM in-Memory Computing differential current architecture for CNN implementations
    Domenech-Asensi, Gines
    Ruiz-Merino, Ramon
    Zapata-Perez, Juan
    Diaz-Madrid, Jose A.
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [39] Robust and High-Performance 12-T Interlocked SRAM for In-Memory Computing
    Surana, Neelam
    Lavania, Mili
    Barma, Abhishek
    Mekie, Joycee
    PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020), 2020, : 1323 - 1326
  • [40] An Aging-Aware CMOS SRAM Structure Design for Boolean Logic In-Memory Computing
    Chang, Wei
    Chen, Yu-Guang
    Huang, Po-Yeh
    Li, Jin-Fu
    34TH IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT 2021), 2021,