On the convolution of convex 2-gons

被引:0
|
作者
Chuaqui, Martin [1 ]
Hernandez, Rodrigo [2 ]
Llinares, Adrian [3 ,4 ]
Mas, Alejandro [5 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306, Santiago 22, Chile
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile
[3] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[4] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[5] Univ Valencia, Dept Anal Matematico, Burjassot 46100, Spain
关键词
Convolution; Convex mappings; 2-gons;
D O I
10.1016/j.jmaa.2024.128387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convolution of functions of the form f alpha ( z) := /I 1+ z \ alpha - 1 1 -z , 2 alpha which map the open unit disk of the complex plane onto polygons of 2 edges when alpha is an element of (0 , 1). Inspired by a work of Cima, we study the limits of convolutions of finitely many f alpha and the convolution of arbitrary unbounded convex mappings. The analysis for the latter is based on the notion of angle at infinity , which provides an estimate for the growth at infinity and determines whether the convolution is bounded or not. A generalization to an arbitrary number of factors shows that the convolution of n randomly chosen unbounded convex mappings has a probability of 1 /n! of remaining unbounded. We provide the precise asymptotic behavior of the coefficients of the functions f alpha . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Proofs of the closure property of NBUC and NBU(2) under convolution
    Hu, TZ
    Xie, HL
    JOURNAL OF APPLIED PROBABILITY, 2002, 39 (01) : 224 - 227
  • [22] Im2win: An Efficient Convolution Paradigm on GPU
    Lu, Shuai
    Chu, Jun
    Guo, Luanzheng
    Liu, Xu T.
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 592 - 607
  • [23] Efficient Computation of Commutative Anisotropic Convolution on the 2-Sphere
    Khalid, Zubair
    Kennedy, Rodney A.
    Sadeghi, Parastoo
    6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS'2012), 2012,
  • [24] The convolution product of the derivative of the Dirac delta 1-x(2)
    Garcia, M.
    Aguirre, M.
    NEXO REVISTA CIENTIFICA, 2009, 22 (02): : 66 - 71
  • [25] Efficient Implementation of 2-D Convolution on DRRA and DiMArch Architectures
    Pudi, Dhilleswararao
    Ryansh, Rajeev
    Boppu, Srinivas
    Yang, Yu
    Hemani, Ahmed
    THE PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON HIGHLY EFFICIENT ACCELERATORS AND RECONFIGURABLE TECHNOLOGIES, HEART 2023, 2023, : 86 - 92
  • [26] COMMUNICATION-MINIMIZING 2D CONVOLUTION IN GPU REGISTERS
    Iandola, Forrest N.
    Sheffield, David
    Anderson, Michael J.
    Phothilimthana, Phitchaya Mangpo
    Keutzer, Kurt
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2116 - 2120
  • [27] An optimized GPU-based 2D convolution implementation
    Perrot, Gilles
    Domas, Stephane
    Couturier, Raphael
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (16) : 4291 - 4304
  • [28] Continuous Singularity of the Weak Limit of Convolution Powers of a Discrete Probability Measure on 2 × 2 Stochastic Matrices
    A. Mukherjea
    J. S. Ratti
    Journal of Theoretical Probability, 1997, 10 : 499 - 506
  • [29] Convolution properties of the harmonic Koebe function and its connection with 2-starlike mappings
    Nagpal, Sumit
    Ravichandran, V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (02) : 191 - 210
  • [30] GPGPU cache bypassing system for 2D and 3D convolution
    Jia S.
    Zhang Y.
    Qin X.
    Sun C.
    Tian Z.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (02): : 92 - 100