Special affine Fourier transform of tempered distributions and pseudo-differential operators

被引:1
作者
Kumar, Manish [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad 500078, India
关键词
Special affine Fourier transform; pseudo-differential operators; generalized heat equations; FRACTIONAL FOURIER; EIGENFUNCTIONS; OPERATIONS;
D O I
10.1080/10652469.2024.2356130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primary aim is to develop a new class of pseudo-differential operators by incorporating the Special Affine Fourier Transform (SAFT) and some of its fundamental properties in Schwartz and tempered distribution space. The secondary aim is to explore the utility of the SAFT in constructing a new generalized heat equation and derive its analytical solution. Further, we have investigated particular cases of the proposed generalized heat equation. Furthermore, we have visually illustrated solutions of this equation via MATLAB R2023b.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 33 条
[1]   GENERALIZATION OF THE FRACTIONAL FOURIER TRANSFORMATION TO AN ARBITRARY LINEAR LOSSLESS TRANSFORMATION - AN OPERATOR APPROACH [J].
ABE, S ;
SHERIDAN, JT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12) :4179-4187
[2]   OPTICAL OPERATIONS ON WAVE-FUNCTIONS AS THE ABELIAN SUBGROUPS OF THE SPECIAL AFFINE FOURIER TRANSFORMATION [J].
ABE, S ;
SHERIDAN, JT .
OPTICS LETTERS, 1994, 19 (22) :1801-1803
[3]   Properties of the linear canonical integral transformation [J].
Alieva, Tatiana ;
Bastiaans, Martin J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (11) :3658-3665
[4]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[5]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[6]   New Convolutions for Quadratic-Phase Fourier Integral Operators and their Applications [J].
Castro, L. P. ;
Minh, L. T. ;
Tuan, N. M. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
[7]   The linear canonical wavelet transform on some function spaces [J].
Guo, Yong ;
Li, Bing-Zhao .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (01)
[8]  
Healy JJ, 2016, SPRINGER SER OPT SCI, V198, P1, DOI 10.1007/978-1-4939-3028-9
[9]   The generalized Fresnel transform and its application to optics [J].
James, DFV ;
Agarwal, GS .
OPTICS COMMUNICATIONS, 1996, 126 (4-6) :207-212
[10]   Numerical calculation of the Fresnel transform [J].
Kelly, Damien P. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (04) :755-764