High angular diffusion tensor imaging estimation from minimal evenly distributed diffusion gradient directions

被引:2
作者
Tang, Zihao [1 ,2 ]
Chen, Sheng [1 ,2 ]
D'Souza, Arkiev [2 ,3 ]
Liu, Dongnan [1 ,2 ]
Calamante, Fernando [2 ,4 ,5 ]
Barnett, Michael [2 ,6 ]
Cai, Weidong [1 ]
Wang, Chenyu [2 ,6 ]
Cabezas, Mariano [2 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[2] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[3] Univ Sydney, Fac Med & Hlth, Sydney, NSW, Australia
[4] Univ Sydney, Sch Biomed Engn, Sydney, NSW, Australia
[5] Univ Sydney, Sydney Imaging, Sydney, NSW, Australia
[6] Sydney Neuroimaging Anal Ctr, Sydney, NSW, Australia
来源
FRONTIERS IN RADIOLOGY | 2023年 / 3卷
关键词
deep learning; MRI; DWI; DTI; high angular resolution; fractional anisotropy; SCLEROSIS; DISEASE; MRI;
D O I
10.3389/fradi.2023.1238566
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and reveal details of the underlying brain micro-structure. By fitting a tensor model to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI) can be derived and scalar measures, such as fractional anisotropy (FA), can then be estimated from the DTI to summarise quantitative microstructural information for clinical studies. In particular, FA has been shown to be a useful research metric to identify tissue abnormalities in neurological disease (e.g. decreased anisotropy as a proxy for tissue damage). However, time constraints in clinical practice lead to low angular resolution diffusion imaging (LARDI) acquisitions that can cause inaccurate FA value estimates when compared to those generated from high angular resolution diffusion imaging (HARDI) acquisitions. In this work, we propose High Angular DTI Estimation Network (HADTI-Net) to estimate an enhanced DTI model from LARDI with a set of minimal and evenly distributed diffusion gradient directions. Extensive experiments have been conducted to show the reliability and generalisation of HADTI-Net to generate high angular DTI estimation from any minimal evenly distributed diffusion gradient directions and to explore the feasibility of applying a data-driven method for this task. The code repository of this work and other related works can be found at https://mri-synthesis.github.io/.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Diffusion tensor imaging of the brain [J].
Alexander, Andrew L. ;
Lee, Jee Eun ;
Lazar, Mariana ;
Field, Aaron S. .
NEUROTHERAPEUTICS, 2007, 4 (03) :316-329
[2]   An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 125 :1063-1078
[3]   Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2015, 122 :166-176
[4]   Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review [J].
Assaf, Yaniv ;
Pasternak, Ofer .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2008, 34 (01) :51-61
[5]   Diffusion weighted imaging: Technique and applications [J].
Baliyan, Vinit ;
Das, Chandan J. ;
Sharma, Raju ;
Gupta, Arun Kumar .
WORLD JOURNAL OF RADIOLOGY, 2016, 8 (09) :785-798
[6]  
Bammer R, 2000, MAGNET RESON MED, V44, P583, DOI 10.1002/1522-2594(200010)44:4<583::AID-MRM12>3.0.CO
[7]  
2-O
[8]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[9]   Super-resolution musculoskeletal MRI using deep learning [J].
Chaudhari, Akshay S. ;
Fang, Zhongnan ;
Kogan, Feliks ;
Wood, Jeff ;
Stevens, Kathryn J. ;
Gibbons, Eric K. ;
Lee, Jin Hyung ;
Gold, Garry E. ;
Hargreaves, Brian A. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) :2139-2154
[10]  
Chen YH, 2018, I S BIOMED IMAGING, P739