Nonlinearity optimization for the lattice of SPPC collider ring

被引:0
作者
Xu, Haocheng [1 ,2 ]
Wang, Yiwei [1 ,2 ]
Gao, Jie [1 ,2 ]
Chen, Yukai [1 ,3 ]
Tang, Jingyu [4 ]
Li, Zhiyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Accelerat Phys & Technol, 19B Yuquan Rd, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Spallat Neutron Source Sci Ctr, 1 Zhongziyuan Rd, Dongguan 523803, Guangdong, Peoples R China
[4] Univ Sci & Technol China, 96 JinZhai Rd, Hefei 230026, Anhui, Peoples R China
关键词
SPPC; Lattice design; Dynamic aperture;
D O I
10.1007/s41605-024-00480-x
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
PurposeThe proposed super proton-proton collider (SPPC) is an energy frontier machine that will possess the capability to explore a significantly broader range of new physics models. The nonlinearity optimization of the SPPC collider ring lattice is crucial in achieving high peak luminosity and beam lifetime.MethodsThe resonance driving terms and chromatic function of the SPPC collider ring lattice are optimized through Lie map analysis and frequency map analysis.ResultsThe linear lattice of the SPPC collider ring at collision energy is presented. With nonlinearity optimization, the lattice aberration and the dynamic aperture of the entire ring have been improved.ConclusionKey resonance driving terms and chromatic functions of the SPPC lattice have been significantly optimized. With Landau octupoles and beam-beam effect, the dynamic aperture of SPPC collider ring exceeds 50 sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} in both planes.
引用
收藏
页码:1542 / 1558
页数:17
相关论文
共 27 条
  • [1] FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3
    Abada, A.
    Abbrescia, M.
    AbdusSalam, S. S.
    Abdyukhanov, I.
    Abelleira Fernandez, J.
    Abramov, A.
    Aburaia, M.
    Acar, A. O.
    Adzic, P. R.
    Agrawal, P.
    Aguilar-Saavedra, J. A.
    Aguilera-Verdugo, J. J.
    Aiba, M.
    Aichinger, I.
    Aielli, G.
    Akay, A.
    Akhundov, A.
    Aksakal, H.
    Albacete, J. L.
    Albergo, S.
    Alekou, A.
    Aleksa, M.
    Aleksan, R.
    Alemany Fernandez, R. M.
    Alexahin, Y.
    Alia, R. G.
    Alioli, S.
    Alipour Tehrani, N.
    Allanach, B. C.
    Allport, P. P.
    Altinli, M.
    Altmannshofer, W.
    Ambrosio, G.
    Amorim, D.
    Amstutz, O.
    Anderlini, L.
    Andreazza, A.
    Andreini, M.
    Andriatis, A.
    Andris, C.
    Andronic, A.
    Angelucci, M.
    Antinori, F.
    Antipov, S. A.
    Antonelli, M.
    Antonello, M.
    Antonioli, P.
    Antusch, S.
    Anulli, F.
    Apolinario, L.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (04) : 755 - 1107
  • [2] Abelleira J.L., 2020, ARXIV
  • [3] Bengtsson, 1997, SLS NOTE, V9, P97
  • [4] Berg J.S., 1996, LANDAU DAMPING 2 DIM
  • [5] Bruning, 2004, LHC DESIGN REPORT, DOI 10.5170/CERN-2004-003-V-1
  • [6] Cai Y., 2005, C PROC C, V0505161, P1907
  • [7] Cai Y., 1997, P 1997 PART ACC C PA, V2, P2583
  • [8] Single-particle dynamics in electron storage rings with extremely low emittance
    Cai, Yunhai
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 645 (01) : 168 - 174
  • [9] CEPC Study Group, 2018, ARXIV
  • [10] Chao A., 2023, Handbook of Accelerator Physics and Engineering, V3rd, DOI DOI 10.1142/13229