Equivariant embedding of finite-dimensional dynamical systems

被引:1
作者
Gutman, Yonatan [1 ]
Levin, Michael [2 ]
Meyerovitch, Tom [2 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Ben Gurion Univ Negev, Dept Math, IL-8410501 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
DELAY EMBEDDINGS; MEAN DIMENSION; FORCED SYSTEMS; THEOREMS;
D O I
10.1007/s00208-024-02911-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an equivariant version of the classical Menger-Nobeling theorem regarding topological embeddings: Whenever a group G acts on a finite-dimensional compact metric space X, a generic continuous equivariant function from X into ([0, 1](r))(G) is a topological embedding, provided that for every positive integer N the space of points in X with orbit size at most N has topological dimension strictly less than rN/2. We emphasize that the result imposes no restrictions whatsoever on the acting group G (beyond the existence of an action on a finite-dimensional space). Moreover if G is finitely generated then there exists a finite subset F subset of G so that for a generic continuous map h : X -> [0, 1](r), the map h(F) : X -> ([0, 1](r))F given by x (sic) ( f (gx))(g is an element of F) is an embedding. This constitutes a generalization of the Takens delay embedding theorem into the topological category.
引用
收藏
页码:915 / 936
页数:22
相关论文
共 39 条
[1]  
ARNOLD VI, 1957, DOKL AKAD NAUK SSSR+, V114, P679
[2]   Prediction of dynamical systems from time-delayed measurements with self-intersections [J].
Baranski, Krzysztof ;
Gutman, Yonatan ;
Spiewak, Adam .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 186 :103-149
[3]   On the Shroer-Sauer-Ott-Yorke Predictability Conjecture for Time-Delay Embeddings [J].
Baranski, Krzysztof ;
Gutman, Yonatan ;
Spiewak, Adam .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 391 (02) :609-641
[4]   A probabilistic Takens theorem [J].
Baranski, Krzysztof ;
Gutman, Yonatan ;
spiewak, Adam .
NONLINEARITY, 2020, 33 (09) :4940-4966
[5]   A Hurewicz theorem for the Assouad-Nagata dimension [J].
Brodskiy, N. ;
Dydak, J. ;
Levin, M. ;
Mitra, A. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 :741-756
[6]   On an embedding theorem [J].
Caballero, V .
ACTA MATHEMATICA HUNGARICA, 2000, 88 (04) :269-278
[7]  
Engelking R., 1995, Sigma Series in Pure Mathematics
[8]  
Flores Antonio, 1933, Ergeb. Math. Kolloq, V34, P4
[9]  
Gromov M., 1999, Math. Phys. Anal. Geom., V2, P323
[10]  
Gutman Y., 2016, ERGODIC THEORY ADV D