To Pair or not to Pair? Machine-Learned Explicitly-Correlated Electronic Structure for NaCl in Water

被引:13
作者
O'Neill, Niamh [1 ,2 ,3 ]
Shi, Benjamin X. [1 ,3 ]
Fong, Kara [1 ,3 ]
Michaelides, Angelos [1 ,3 ]
Schran, Christoph [2 ,3 ]
机构
[1] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[2] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
[3] Univ Cambridge, Lennard Jones Ctr, Cambridge CB2 1TN, England
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 23期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; RANDOM-PHASE-APPROXIMATION; LIQUID WATER; HYDRATION STRUCTURE; AQUEOUS SOLVATION; SODIUM-CHLORIDE; NUCLEAR; POTENTIALS; TRANSPORT; ALKALI;
D O I
10.1021/acs.jpclett.4c01030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The extent of ion pairing in solution is an important phenomenon to rationalize transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between solvated ions. The relative stabilities of the paired and solvent shared states in the PMF and the barrier between them are highly sensitive to the underlying potential energy surface. However, direct application of accurate electronic structure methods is challenging, since long simulations are required. We develop wave function based machine learning potentials with the random phase approximation (RPA) and second order M & oslash;ller-Plesset (MP2) perturbation theory for the prototypical system of Na and Cl ions in water. We show both methods in agreement, predicting the paired and solvent shared states to have similar energies (within 0.2 kcal/mol). We also provide the same benchmarks for different DFT functionals as well as insight into the PMF based on simple analyses of the interactions in the system.
引用
收藏
页码:6081 / 6091
页数:11
相关论文
共 102 条
  • [1] Understanding non-covalent interactions in larger molecular complexes from first principles
    Al-Hamdani, Yasmine S.
    Tkatchenko, Alexandre
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (01)
  • [2] [Anonymous], 2022, arXiv
  • [3] Local Aqueous Solvation Structure Around Ca2+ During Ca2+•••Cl- Pair Formation
    Baer, Marcel D.
    Mundy, Christopher J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (08) : 1885 - 1893
  • [4] High-Throughput Aqueous Electrolyte Structure Prediction Using IonSolvR and Equivariant Graph Neural Network Potentials
    Baker, Sophie
    Pagotto, Joshua
    Duignan, Timothy T.
    Page, Alister J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (42) : 9508 - 9515
  • [5] Hydration structure of Na+ and K+ from ab initio molecular dynamics based on modern density functional theory
    Bankura, Arindam
    Carnevale, Vincenzo
    Klein, Michael L.
    [J]. MOLECULAR PHYSICS, 2014, 112 (9-10) : 1448 - 1456
  • [6] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Batzner, Simon
    Musaelian, Albert
    Sun, Lixin
    Geiger, Mario
    Mailoa, Jonathan P.
    Kornbluth, Mordechai
    Molinari, Nicola
    Smidt, Tess E.
    Kozinsky, Boris
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [8] Machine learning potentials for extended systems: a perspective
    Behler, Joerg
    Csanyi, Gabor
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (07)
  • [9] Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
    Benavides, A. L.
    Aragones, J. L.
    Vega, C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (12)
  • [10] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690