On viscosity solutions of path-dependent Hamilton-Jacobi-Bellman-Isaacs equations for fractional-order systems

被引:0
|
作者
Gomoyunov, M. I. [1 ,2 ]
机构
[1] Russian Acad Sci, NN Krasovskii Inst Math & Mech, Ural Branch, 16 S Kovalevskaya Str, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, 19 Mira Str, Ekaterinburg 620002, Russia
基金
俄罗斯科学基金会;
关键词
Differential game; Caputo fractional derivative; Value functional; Path-dependent Hamilton-Jacobi equation; Fractional coinvariant derivatives; Viscosity solution; STOCHASTIC-CONTROL;
D O I
10.1016/j.jde.2024.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a two-person zero-sum differential game for a dynamical system described by a Caputo fractional differential equation of order alpha is an element of (0, 1) and a Bolza cost functional. The differential game is associated to the Cauchy problem for the path-dependent Hamilton-Jacobi-Bellman-Isaacs equation with so-called fractional coinvariant derivatives of order alpha and the corresponding right-end boundary condition. A notion of a viscosity solution of the Cauchy problem is introduced, and the value functional of the differential game is characterized as a unique viscosity solution of this problem. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:335 / 362
页数:28
相关论文
共 26 条
  • [1] Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations
    Buckdahn, Rainer
    Li, Juan
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) : 444 - 475
  • [2] Differential Games for Fractional-Order Systems: Hamilton-Jacobi-Bellman-Isaacs Equation and Optimal Feedback Strategies
    Gomoyunov, Mikhail, I
    MATHEMATICS, 2021, 9 (14)
  • [3] On Hamilton-Jacobi-Bellman-Isaacs Equation for Time-Delay Systems
    Plaksin, Anton
    IFAC PAPERSONLINE, 2019, 52 (18): : 138 - 143
  • [4] Equivalence of minimax and viscosity solutions of path-dependent Hamilton-Jacobi equations
    Gomoyunov, M. I.
    Plaksin, A. R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (11)
  • [5] STABLE NUMERICAL SCHEMES FOR SOLVING HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Botkin, Nikolai D.
    Hoffmann, Karl-Heinz
    Turova, Varvara L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 992 - 1007
  • [6] RECURSIVE STOCHASTIC DIFFERENTIAL GAMES WITH NON-LIPSCHITZIAN GENERATORSAND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Wang, Guangchen
    Xing, Zhuangzhuang
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024,
  • [7] STOCHASTIC DIFFERENTIAL GAMES WITH RANDOM COEFFICIENTS AND STOCHASTIC HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Qiu, Jinniao
    Zhang, Jing
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (02): : 689 - 730
  • [8] A convergence theorem for Crandall-Lions viscosity solutions to path-dependent Hamilton-Jacobi-Bellman PDEs
    Criens, David
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [9] Path-dependent Hamilton-Jacobi-Bellman equations related to controlled stochastic functional differential systems
    Ji, Shaolin
    Wang, Lin
    Yang, Shuzhen
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (01): : 109 - 120
  • [10] Path-Dependent Hamilton-Jacobi Equations: The Minimax Solutions Revised
    Gomoyunov, Mikhail I.
    Lukoyanov, Nikolai Yu.
    Plaksin, Anton R.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S1087 - S1117