Recycling of graphite anode from retired lithium-ion batteries to cathode of high-performance lithium-oxygen batteries

被引:3
|
作者
Wang, Yunshuo [1 ]
Lv, Xiaodong [1 ]
Kimura, Hideo [1 ]
Yang, Yunfei [1 ]
Hou, Chuanxin [1 ]
Xie, Xiubo [1 ]
Sun, Xueqin [1 ]
Zhang, Yuping [1 ]
Du, Wei [1 ]
Yang, Xiaoyang [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, 30 Qingquan Rd, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Retired LIBs; Graphite reuse; Li; -O; 2; battery; Cathode; POWDER;
D O I
10.1016/j.est.2024.111540
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recycling and reusing the graphite anodes from retired lithium-ion batteries (LIBs) can remarkably contribute to balancing the supply and demand contradiction in the graphite resource market, it can also reduce the environmental damage, caused by solid waste of batteries. Against this backdrop, we have prepared expanded graphite (EG) with a foaming structure from the spent graphite anode of LIBs, using a universal chemical insertion process combined with annealing to make it an ideal cathode for lithium-oxygen (Li-O2) batteries. The continuous foaming structure of EG offers abundant reaction sites and ample room for the deposition of discharge products. Moreover, efficient mass transfer in the battery reaction is ensured by using an interconnected "spongy" structure. As a result, when introduced as a cathode in the Li-O2 battery, the as-prepared EG delivers a serious excellent battery performance, this performance includes a high specific capacity of 11,375 mA h g-1 and an impressively cycle performance of 447 cycles with a capacity of 600 mA h g-1 under a current density of 200 mA g-1. This strategy allows the high value-added reuse of spent LIBs graphite anodes to the high-performance Li-O2 batteries cathode, effectively preventing resource waste and environmental pollution.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] An in situ self-developed graphite as high capacity anode of lithium-ion batteries
    Gao, Mengyao
    Liu, Naiqiang
    Chen, Yilei
    Guan, Yuepeng
    Wang, Weikun
    Zhang, Hao
    Wang, Feng
    Huang, Yaqin
    CHEMICAL COMMUNICATIONS, 2015, 51 (60) : 12118 - 12121
  • [32] Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries
    Wang, Chundong
    Li, Yi
    Chui, Ying-San
    Wu, Qi-Hui
    Chen, Xianfeng
    Zhang, Wenjun
    NANOSCALE, 2013, 5 (21) : 10599 - 10604
  • [33] Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries
    Wu, Lili
    Yang, Juan
    Zhou, Xiangyang
    Zhang, Manfang
    Ren, Yongpeng
    Nie, Yang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (29) : 11381 - 11387
  • [34] A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries
    Luo, Yuwen
    Liu, Jinlong
    Zhang, Lei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (38)
  • [35] High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium-Oxygen Batteries
    Guo, Huanhuan
    Hou, Guangmei
    Li, Deping
    Sun, Qidi
    Ai, Qing
    Si, Pengchao
    Min, Guanghui
    Lou, Jun
    Feng, Jinkui
    Ci, Lijie
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) : 30793 - 30800
  • [36] Assembly of LiMnPO4 Nanoplates into Microclusters as a High-Performance Cathode in Lithium-Ion Batteries
    Wang, Chao
    Li, Shiheng
    Han, Yuyao
    Lu, Zhenda
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) : 27618 - 27624
  • [37] Recovery of Graphite from Spent Lithium-Ion Batteries
    Badenhorst, Charlotte
    Kuzniarska-Biernacka, Iwona
    Guedes, Alexandra
    Mousa, Elsayed
    Ramos, Violeta
    Rollinson, Gavin
    Ye, Guozhu
    Valentim, Bruno
    RECYCLING, 2023, 8 (05)
  • [38] Recent recycling methods for spent cathode materials from lithium-ion batteries: A review
    Dhanabalan, Karmegam
    Aruchamy, Kanakaraj
    Sriram, Ganesan
    Sadhasivam, Thangarasu
    Oh, Tae Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 139 : 111 - 124
  • [39] Optimizing anode materials for lithium-ion batteries: The role of lithium iron phosphate/graphite composites
    Devlet, Bayram
    Kecebas, Ali
    Koc, Fatos
    Gizli, Nilay
    Sahin, Utkucan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 12799 - 12814
  • [40] Mesoporous titania rods as an anode material for high performance lithium-ion batteries
    Jiang, Yan-Mei
    Wang, Kai-Xue
    Guo, Xing-Xing
    Wei, Xiao
    Wang, Jing-Feng
    Chen, Jie-Sheng
    JOURNAL OF POWER SOURCES, 2012, 214 : 298 - 302