Recycling of graphite anode from retired lithium-ion batteries to cathode of high-performance lithium-oxygen batteries

被引:3
|
作者
Wang, Yunshuo [1 ]
Lv, Xiaodong [1 ]
Kimura, Hideo [1 ]
Yang, Yunfei [1 ]
Hou, Chuanxin [1 ]
Xie, Xiubo [1 ]
Sun, Xueqin [1 ]
Zhang, Yuping [1 ]
Du, Wei [1 ]
Yang, Xiaoyang [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, 30 Qingquan Rd, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Retired LIBs; Graphite reuse; Li; -O; 2; battery; Cathode; POWDER;
D O I
10.1016/j.est.2024.111540
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recycling and reusing the graphite anodes from retired lithium-ion batteries (LIBs) can remarkably contribute to balancing the supply and demand contradiction in the graphite resource market, it can also reduce the environmental damage, caused by solid waste of batteries. Against this backdrop, we have prepared expanded graphite (EG) with a foaming structure from the spent graphite anode of LIBs, using a universal chemical insertion process combined with annealing to make it an ideal cathode for lithium-oxygen (Li-O2) batteries. The continuous foaming structure of EG offers abundant reaction sites and ample room for the deposition of discharge products. Moreover, efficient mass transfer in the battery reaction is ensured by using an interconnected "spongy" structure. As a result, when introduced as a cathode in the Li-O2 battery, the as-prepared EG delivers a serious excellent battery performance, this performance includes a high specific capacity of 11,375 mA h g-1 and an impressively cycle performance of 447 cycles with a capacity of 600 mA h g-1 under a current density of 200 mA g-1. This strategy allows the high value-added reuse of spent LIBs graphite anodes to the high-performance Li-O2 batteries cathode, effectively preventing resource waste and environmental pollution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Recycling and Reusing of Graphite from Retired Lithium-ion Batteries: A Review
    Tian, Honghong
    Graczyk-Zajac, Magdalena
    Kessler, Alois
    Weidenkaff, Anke
    Riedel, Ralf
    ADVANCED MATERIALS, 2024, 36 (13)
  • [2] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Wang, Li
    Wang, Chao
    Zhang, Jing-Yi
    Qiu, Jia-Cheng
    Fu, Xu-Wang
    Zhang, Zi-Rui
    Feng, Jian-Min
    Dong, Lei
    Long, Cong-Lai
    Li, De-Jun
    Wang, Xiao-Wei
    Zhang, Bao
    Zhang, Jia-Feng
    Zhao, Rui-Rui
    RARE METALS, 2024, 43 (05) : 2161 - 2171
  • [3] From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries
    Liu, Kui
    Yang, Shenglong
    Luo, Luqin
    Pan, Qichang
    Zhang, Peng
    Huang, Youguo
    Zheng, Fenghua
    Wang, Hongqiang
    Li, Qingyu
    ELECTROCHIMICA ACTA, 2020, 356
  • [4] Advances and challenges in anode graphite recycling from spent lithium-ion batteries
    Niu, Bo
    Xiao, Jiefeng
    Xu, Zhenming
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 439
  • [5] A Review of Cathode and Anode Materials for Lithium-Ion Batteries
    Mekonnen, Yemeserach
    Sundararajan, Aditya
    Sarwat, Arif I.
    SOUTHEASTCON 2016, 2016,
  • [6] SiOx coated graphite with inorganic aqueous binders as high-performance anode for lithium-ion batteries
    Trivedi, Shivam
    Dinda, Sirshendu
    Tang, Yushu
    Fuchs, Stefan
    Pamidi, Venkat
    Stein, Helge S.
    Munnangi, Anji Reddy
    Fichtner, Maximilian
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [7] Composite protective layer for Li metal anode in high-performance lithium-oxygen batteries
    Lee, Dong Jin
    Lee, Hongkyung
    Song, Jongchan
    Ryou, Myung-Hyun
    Lee, Yong Min
    Kim, Hee-Tak
    Park, Jung-Ki
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 40 : 45 - 48
  • [8] Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries
    Komaba, S.
    Okushi, K.
    Ozeki, T.
    Yui, H.
    Katayama, Y.
    Miura, T.
    Saito, T.
    Groult, H.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (05) : A107 - A110
  • [9] Recycling of spent lithium-ion batteries to resynthesize high-performance cathode materials for sodium-ion storage
    Gong, Hai-Qiang
    Wang, Xing-Yuan
    Ye, Long
    Zhang, Bao
    Ou, Xing
    TUNGSTEN, 2024, 6 (03) : 574 - 584
  • [10] NiFe saponite as a new anode material for high-performance lithium-ion batteries
    Zhang, Jian
    Yin, Qing
    Luo, Jianeng
    Han, Jingbin
    Zheng, Lirong
    Wei, Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (14) : 6539 - 6545