Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion Processes

被引:0
作者
Yang, Haoming [1 ]
Hasan, Ali [1 ]
Ng, Yuting [1 ]
Tarokh, Vahid [1 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238 | 2024年 / 238卷
关键词
FOKKER-PLANCK EQUATION; MODEL; APPROXIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
McKean-Vlasov stochastic differential equations (MV-SDEs) provide a mathematical description of the behavior of an infinite number of interacting particles by imposing a dependence on the particle density. We study the influence of explicitly including distributional information in the parameterization of the SDE. We propose a series of semi-parametric methods for representing MV-SDEs, and corresponding estimators for inferring parameters from data based on the properties of the MV-SDE. We analyze the characteristics of the different architectures and estimators, and consider their applicability in relevant machine learning problems. We empirically compare the performance of the different architectures and estimators on real and synthetic datasets for time series and probabilistic modeling. The results suggest that explicitly including distributional dependence in the parameterization of the SDE is effective in modeling temporal data with interaction under an exchangeability assumption while maintaining strong performance for standard Ito-SDEs due to the richer class of probability flows associated with MV-SDEs.
引用
收藏
页数:34
相关论文
共 58 条
[1]  
Belabbas MA, 2020, Arxiv, DOI arXiv:2001.04264
[2]  
Alvarez-Melis David, 2021, PR MACH LEARN RES, V139
[3]  
Ansari AF, 2021, Arxiv, DOI arXiv:2012.00780
[4]   MEAN-FIELD STOCHASTIC DIFFERENTIAL EQUATIONS AND ASSOCIATED PDES [J].
Buckdahn, Rainer ;
Li, Juan ;
Peng, Shige ;
Rainer, Catherine .
ANNALS OF PROBABILITY, 2017, 45 (02) :824-878
[5]  
Cameron Scott., 2021, arXiv
[6]  
Carmona R, 2018, PROB THEOR STOCH MOD, V83, P3, DOI 10.1007/978-3-319-58920-6
[7]   Long-Time Behaviour and Phase Transitions for the Mckean-Vlasov Equation on the Torus [J].
Carrillo, A. ;
Gvalani, R. S. ;
Pavliotis, G. A. ;
Schlichting, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (01) :635-690
[8]   Classical Solutions for a Nonlinear Fokker-Planck Equation Arising in Computational Neuroscience [J].
Carrillo, Jose A. ;
Gonzalez, Maria D. M. ;
Gualdani, Maria P. ;
Schonbek, Maria E. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (03) :385-409
[9]   SOLVING INVERSE STOCHASTIC PROBLEMS FROM DISCRETE PARTICLE OBSERVATIONS USING THE FOKKER-PLANCK EQUATION AND PHYSICS-INFORMED NEURAL NETWORKS [J].
Chen, Xiaoli ;
Yang, Liu ;
Duan, Jinqiao ;
Karniadakis, George E. M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) :B811-B830
[10]  
Chizat L, 2022, ADV NEUR IN