Turn-to-turn loss and mechanical behaviors of no-insulation layer-wound coil with active feedback control

被引:0
作者
Li, DongKe [1 ,2 ]
Liu, DongHui [1 ,2 ]
Yong, HuaDong [1 ,2 ]
Zhang, XingYi [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Civil Engn & Mech, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Inst Supercond Mech, Lanzhou 730000, Peoples R China
关键词
no-insulation layer-wound coil; active feedback control; turn-to-turn loss; mechanical behavior;
D O I
10.1360/SSPMA-2023-0310
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The no-insulationhigh-temperaturesuperconductinglayer-woundcoil has a long chargingdelay, whichcan be mitigatedthroughproportionaland integral(PI) activefeedbackcontrols.However, PI controlrequiresa larger powersupplycurrent,potentiallycausingadditionalenergyloss and mechanicaldamage.Thus,analyzingthe electromagneticandmechanicalbehaviorsof the layer-woundcoil with PI controlis necessary. In this article,a hybridnumerical,combiningthe equivalentcircuitnetworkmodelwith the finiteelementmodel,is usedto calculatethe turn-to-turnloss andmechanicalresponseof the coil with PI control.The numericalcalculationdemonstratesthat the layer-woundcoil with PIcontrolrequiresa largerpowersupplyand generateshigherturn-to-turnloss energy and hoop stresscomparedwith a coilwithoutPI control.Higherstressis generatedin the coil with PI control,whilethe differencein the hoopstressisrelativelysmallerthan that in the turn-to-turnloss. In a backgroundfield of 10 T, the differencein the hoopstressis20 MPa.The loss of energyincreasesrapidlywith increasingnumberof turnsin the axialdirection.Thus,a coil withfeweraxial turns is preferredto reducethe turn-to-turnloss and hoop stress.In addition,increasingthe chargingtime candecreasethe loss of energy and peak stres
引用
收藏
页数:11
相关论文
共 47 条
[1]   INSTANTANEOUS HEAT DISSIPATION FROM MAGNETIZATION LOSSES DURING RAMPING OF MAGNETS [J].
BURGERS, AR ;
EIKELBOOM, JA .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (01) :850-853
[2]   45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet [J].
Hahn, Seungyong ;
Kim, Kwanglok ;
Kim, Kwangmin ;
Hu, Xinbo ;
Painter, Thomas ;
Dixon, Iain ;
Kim, Seokho ;
Bhattarai, Kabindra R. ;
Noguchi, So ;
Jaroszynski, Jan ;
Larbalestier, David C. .
NATURE, 2019, 570 (7762) :496-+
[3]  
Hahn S, 2011, IEEE T APPL SUPERCON, V21, P1592, DOI [10.1109/TASC.2010.2093492, 10.1109/tasc.2010.2093492]
[4]   Hot Spot Temperature in an HTS Coil: Simulations With MIITs and Finite Element Method [J].
Haro, E. ;
Stenvall, A. ;
van Nugteren, J. ;
Kirby, G. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (02) :1-7
[5]   Method for generating linear current-field characteristics and eliminating charging delay in no-insulation superconducting magnets [J].
Kim, Seokho ;
Hahn, Seungyong ;
Kim, Kwangmin ;
Larbalestier, David .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2017, 30 (03)
[6]  
Kim Y, 2013, IEEETrans ApplSupercond, V23
[7]   Stress and Deformation Analysis of REBCO Pancake Coils With Individual Turn Movement [J].
Kodaka, Kazuma ;
Noguchi, So .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
[8]   Screening current rotation effects: SCIF and strain in REBCO magnets [J].
Kolb-Bond, D. ;
Bird, M. ;
Dixon, I. R. ;
Painter, T. ;
Lu, J. ;
Kim, K. L. ;
Kim, K. M. ;
Walsh, R. ;
Grilli, F. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2021, 34 (09)
[9]  
Lécrevisse T, 2016, IEEE T APPL SUPERCON, V26, DOI [10.1109/TASC.2016.2522638, 10.1109/tasc.2016.2522638]
[10]  
Li D, 2022, Super cond Sci Technol, V35