Application of artificial intelligence-based magnetic resonance imaging in diagnosis of cerebral small vessel disease

被引:2
作者
Hu, Xiaofei [1 ,2 ]
Liu, Li [3 ]
Xiong, Ming [3 ]
Lu, Jie [1 ]
机构
[1] Capital Med Univ, Xuanwu Hosp, 45 Changchun St, Beijing, Peoples R China
[2] Army Med Univ, Third Mil Med Univ, Southwest Hosp, Dept Nucl Med, Chongqing, Peoples R China
[3] Army Med Univ, Third Mil Med Univ, Sch Biomed Engn & Med Imaging, Dept Digital Med, Chongqing, Peoples R China
基金
中国博士后科学基金;
关键词
artificial intelligence; cerebral small vessel disease; deep learning; magnetic resonance imaging; review; STROKE; IMPAIRMENT; MECHANISMS; INSIGHTS; ATROPHY; MRI;
D O I
10.1111/cns.14841
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cerebral small vessel disease (CSVD) is an important cause of stroke, cognitive impairment, and other diseases, and its early quantitative evaluation can significantly improve patient prognosis. Magnetic resonance imaging (MRI) is an important method to evaluate the occurrence, development, and severity of CSVD. However, the diagnostic process lacks quantitative evaluation criteria and is limited by experience, which may easily lead to missed diagnoses and misdiagnoses. With the development of artificial intelligence technology based on deep learning, the extraction of high-dimensional features in imaging can assist doctors in clinical decision-making, and it has been widely used in brain function and mental disorders, and cardiovascular and cerebrovascular diseases. This paper summarizes the global research results in recent years and briefly describes the application of deep learning in evaluating CSVD signs in MRI imaging, including recent small subcortical infarcts, lacunes of presumed vascular origin, vascular white matter hyperintensity, enlarged perivascular spaces, cerebral microbleeds, brain atrophy, cortical superficial siderosis, and cortical cerebral microinfarct. Recent advancements in artificial intelligence, particularly deep learning, have revolutionized the detection and evaluation of cerebral small vessel disease (CSVD) through magnetic resonance imaging (MRI). This study demonstrates how deep learning can extract high-dimensional imaging features, improving the quantitative assessment of CSVD, and leading to earlier diagnosis and better patient outcomes.image
引用
收藏
页数:11
相关论文
共 56 条
[1]   Medical Image Analysis using Convolutional Neural Networks: A Review [J].
Anwar, Syed Muhammad ;
Majid, Muhammad ;
Qayyum, Adnan ;
Awais, Muhammad ;
Alnowami, Majdi ;
Khan, Muhammad Khurram .
JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
[2]   Automatic segmentation of white matter hyperintensities from brain magnetic resonance images in the era of deep learning and big data-A systematic review [J].
Balakrishnan, Ramya ;
Hernandez, Maria del C. Valdes ;
Farrall, Andrew J. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
[3]   Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors [J].
Bernal, Jose ;
Valverde, Sergi ;
Kushibar, Kaisar ;
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier .
NEUROINFORMATICS, 2021, 19 (03) :477-492
[4]   CNS small vessel disease A clinical review [J].
Cannistraro, Rocco J. ;
Badi, Mohammed ;
Eidelman, Benjamin H. ;
Dickson, Dennis W. ;
Middlebrooks, Erik H. ;
Meschia, James F. .
NEUROLOGY, 2019, 92 (24) :1146-1156
[5]   Deep Learning in Medical Image Analysis [J].
Chan, Heang-Ping ;
Samala, Ravi K. ;
Hadjiiski, Lubomir M. ;
Zhou, Chuan .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 :3-21
[6]   Primary Categorizing and Masking Cerebral Small Vessel Disease Based on "Deep Learning System" [J].
Duan, Yunyun ;
Shan, Wei ;
Liu, Liying ;
Wang, Qun ;
Wu, Zhenzhou ;
Liu, Pan ;
Ji, Jiahao ;
Liu, Yaou ;
He, Kunlun ;
Wang, Yongjun .
FRONTIERS IN NEUROINFORMATICS, 2020, 14
[7]   Enlarged perivascular spaces in brain MRI: Automated quantification in four regions [J].
Dubost, Florian ;
Yilmaz, Pinar ;
Adams, Hieab ;
Bortsova, Gerda ;
Ikram, M. Arfan ;
Niessen, Wiro ;
Vernooij, Meike ;
de Bruijne, Marleen .
NEUROIMAGE, 2019, 185 :534-544
[8]   Neuroimaging standards for research into small vessel disease-advances since 2013 [J].
Duering, Marco ;
Biessels, Geert Jan ;
Brodtmann, Amy ;
Chen, Christopher ;
Cordonnier, Charlotte ;
de Leeuw, Frank-Erik ;
Debette, Stephanie ;
Frayne, Richard ;
Jouvent, Eric ;
Rost, Natalia S. ;
ter Telgte, Annemieke ;
Salman, Rustam Al-Shahi ;
Backes, Walter H. ;
Bae, Hee-Joon ;
Brown, Rosalind ;
Chabriat, Hugues ;
De Luca, Alberto ;
deCarli, Charles ;
Dewenter, Anna ;
Doubal, Fergus N. ;
Ewers, Michael ;
Field, Thalia S. ;
Ganesh, Aravind ;
Greenberg, Steven ;
Helmer, Karl G. ;
Hilal, Saima ;
Jochems, Angela C. C. ;
Jokinen, Hanna ;
Kuijf, Hugo ;
Lam, Bonnie Y. K. ;
Lebenberg, Jessica ;
MacIntosh, Bradley J. ;
Maillard, Pauline ;
Mok, Vincent C. T. ;
Pantoni, Leonardo ;
Rudilosso, Salvatore ;
Satizabal, Claudia L. ;
Schirmer, Markus D. ;
Schmidt, Reinhold ;
Smith, Colin ;
Staals, Julie ;
Thrippleton, Michael J. ;
van Veluw, Susanne J. ;
Vemuri, Prashanthi ;
Wang, Yilong ;
Werring, David ;
Zedde, Marialuisa ;
Akinyemi, Rufus O. ;
Del Brutto, Oscar H. ;
Markus, Hugh S. .
LANCET NEUROLOGY, 2023, 22 (07) :602-618
[9]   Patterns of neuropsychological impairment in MCI patients with small subcortical infarcts or hippocampal atrophy [J].
Gainotti, Guido ;
Ferraccioli, Monica ;
Vita, Maria Gabriella ;
Marra, Camillo .
JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2008, 14 (04) :611-619
[10]   Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin [J].
Ghafoorian, Mohsen ;
Karssemeijer, Nico ;
Heskes, Tom ;
Bergkamp, Mayra ;
Wissink, Joost ;
Obels, Jiri ;
Keizer, Karlijn ;
de Leeuw, Frank-Erik ;
van Ginneken, Bram ;
Marchiori, Elena ;
Platel, Bram .
NEUROIMAGE-CLINICAL, 2017, 14 :391-399