Koszul self-duality of manifolds

被引:1
作者
Malin, Connor [1 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
DUALIZING SPECTRUM; EMBEDDINGS; SPACES;
D O I
10.1112/topo.12334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Koszul duality for operads in (Top,x)$(\mathrm{Top},\times)$ can be expressed via generalized Thom complexes. As an application, we prove the Koszul self-duality of the right module EM$E_M$ associated to a framed manifold M$M$. We discuss implications for factorization homology, embedding calculus, and confirm an old conjecture of Ching on the relation of Goodwillie calculus to manifold calculus.
引用
收藏
页数:48
相关论文
共 49 条
[1]   POINCARE/KOSZUL DUALITY FOR GENERAL OPERADS [J].
Amabel, Araminta .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) :1-30
[2]  
[Anonymous], 1973, Lecture Notes in Mathematics
[3]  
[Anonymous], 2014, Categorical homotopy theory
[4]  
Arone G., 2011, Operads and chain rules for the calculus of functors
[5]  
Arone G, 2014, Arxiv, DOI arXiv:1410.1809
[6]   A classification of Taylor towers of functors of spaces and spectra [J].
Arone, Gregory ;
Ching, Michael .
ADVANCES IN MATHEMATICS, 2015, 272 :471-552
[7]  
Ayala D., 2020, A factorization homology primer
[8]   ZERO-POINTED MANIFOLDS [J].
Ayala, David ;
Francis, John .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (03) :785-858
[9]   Poincare/Koszul Duality [J].
Ayala, David ;
Francis, John .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (03) :847-933
[10]   Factorization homology of topological manifolds [J].
Ayala, David ;
Francis, John .
JOURNAL OF TOPOLOGY, 2015, 8 (04) :1045-1084