Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee

被引:1
作者
Cohen, Israel [1 ,2 ]
Sorin, Vera [1 ,2 ]
Lekach, Ruth [2 ,3 ]
Raskin, Daniel [1 ,2 ]
Segev, Maria [1 ,2 ]
Klang, Eyal [1 ,2 ]
Eshed, Iris [1 ,2 ]
Barash, Yiftach [1 ,2 ]
机构
[1] Sheba Med Ctr, Dept Diagnost Imaging, Tel Hashomer, Israel
[2] Tel Aviv Univ, Fac Med, Tel Aviv, Israel
[3] Sourasky Med Ctr, Dept Nucl Med, Tel Aviv, Israel
关键词
Artificial Intelligence; Knee trauma; Lipo-hemarthrosis; Knee effusion; Machine learning; JOINT;
D O I
10.1016/j.ejrad.2024.111460
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Traumatic knee injuries are challenging to diagnose accurately through radiography and to a lesser extent, through CT, with fractures sometimes overlooked. Ancillary signs like joint effusion or lipo-hemarthrosis are indicative of fractures, suggesting the need for further imaging. Artificial Intelligence (AI) can automate image analysis, improving diagnostic accuracy and help prioritizing clinically important X-ray or CT studies. Objective: To develop and evaluate an AI algorithm for detecting effusion of any kind in knee X-rays and selected CT images and distinguishing between simple effusion and lipo-hemarthrosis indicative of intra-articular fractures. Methods: This retrospective study analyzed post traumatic knee imaging from January 2016 to February 2023, categorizing images into lipo-hemarthrosis, simple effusion, or normal. It utilized the FishNet-150 algorithm for image classification, with class activation maps highlighting decision-influential regions. The AI 's diagnostic accuracy was validated against a gold standard, based on the evaluations made by a radiologist with at least four years of experience. Results: Analysis included CT images from 515 patients and X-rays from 637 post traumatic patients, identifying lipo-hemarthrosis, simple effusion, and normal findings. The AI showed an AUC of 0.81 for detecting any effusion, 0.78 for simple effusion, and 0.83 for lipo-hemarthrosis in X-rays; and 0.89, 0.89, and 0.91, respectively, in CTs. Conclusion: The AI algorithm effectively detects knee effusion and differentiates between simple effusion and lipo-hemarthrosis in post-traumatic patients for both X-rays and selected CT images further studies are needed to validate these results.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
Ahn J.M., 2006, Imaging Decis, V10, P14, DOI [10.1111/j.1617-0830.2006.00063.x, DOI 10.1111/J.1617-0830.2006.00063.X]
[2]   Comparison of X-Ray Imaging and Computed Tomography Scan in the Evaluation of Knee Trauma [J].
Avci, Mustafa ;
Kozaci, Nalan .
MEDICINA-LITHUANIA, 2019, 55 (10)
[3]   Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation [J].
Baltruschat, Ivo ;
Steinmeister, Leonhard ;
Nickisch, Hannes ;
Saalbach, Axel ;
Grass, Michael ;
Adam, Gerhard ;
Knopp, Tobias ;
Ittrich, Harald .
EUROPEAN RADIOLOGY, 2021, 31 (06) :3837-3845
[4]  
Berman M.M., 1972, J. Am. Coll. Emerg. Physicians., V1, P35, DOI [10.1016/S0361-1124(72)80098-4, DOI 10.1016/S0361-1124(72)80098-4]
[5]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[6]   MR findings in patients with acute tibial plateau fractures [J].
Colletti, P ;
Greenberg, H ;
Terk, MR .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1996, 20 (05) :389-394
[7]   Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel [J].
Dreizin, David ;
Staziaki, Pedro V. ;
Khatri, Garvit D. ;
Beckmann, Nicholas M. ;
Feng, Zhaoyong ;
Liang, Yuanyuan ;
Delproposto, Zachary S. ;
Klug, Maximiliano ;
Spann, J. Stephen ;
Sarkar, Nathan ;
Fu, Yunting .
EMERGENCY RADIOLOGY, 2023, 30 (03) :251-265
[8]   Epidemiology of 6.6 Million Knee Injuries Presenting to United States Emergency Departments From 1999 Through 2008 [J].
Gage, Brett E. ;
McIlvain, Natalie M. ;
Collins, Christy L. ;
Fields, Sarah K. ;
Comstock, R. Dawn .
ACADEMIC EMERGENCY MEDICINE, 2012, 19 (04) :378-385
[9]   Bone bruise, lipohemarthrosis, and joint effusion in CT of non-displaced hip fracture [J].
Geijer, Mats ;
Dunker, Dennis ;
Collin, David ;
Gothlin, Jan H. .
ACTA RADIOLOGICA, 2012, 53 (02) :197-202
[10]  
Johnson MW, 2000, AM FAM PHYSICIAN, V61, P2391