Radiomics combined with transcriptomics to predict response to immunotherapy from patients treated with PD-1/PD-L1 inhibitors for advanced NSCLC

被引:2
作者
Bouhamama, Amine [1 ,2 ]
Leporq, Benjamin [2 ]
Faraz, Khuram [2 ]
Foy, Jean-Philippe [3 ]
Boussageon, Maxime [4 ]
Perol, Maurice [4 ]
Ortiz-Cuaran, Sandra [5 ]
Ghiringhelli, Francois [6 ]
Saintigny, Pierre [4 ,5 ]
Beuf, Olivier [2 ]
Pilleul, Frank [1 ,2 ]
机构
[1] Ctr Leon Berard, Dept Radiol, Lyon, France
[2] Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, INSA Lyon,CNRS,Creatis,UMR 5220,U1206, Lyon, France
[3] Sorbonne Univ, APHP, Pitie Salpetriere Hosp, Dept Oral & Maxillofacial Surg, Paris, France
[4] Ctr Leon Berard, Dept Med Oncol, Lyon, France
[5] Univ Lyon, Claude Bernard Lyon Univ 1, Canc Res Ctr Lyon, Ctr Leon Berard,CRCL,INSERM 1052,CNRS 5286, Lyon, France
[6] Ctr Georges Francois Leclerc, Dept Med Oncol, Dijon, France
来源
FRONTIERS IN RADIOLOGY | 2023年 / 3卷
关键词
radiomics; NSCLC; immunotherapy; PD-L1; inhibitors; transcriptomics; DOCETAXEL; TUMOR; NIVOLUMAB; BLOCKADE;
D O I
10.3389/fradi.2023.1168448
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Introduction In this study, we aim to build radiomics and multiomics models based on transcriptomics and radiomics to predict the response from patients treated with the PD-L1 inhibitor.Materials and methods One hundred and ninety-five patients treated with PD-1/PD-L1 inhibitors were included. For all patients, 342 radiomic features were extracted from pretreatment computed tomography scans. The training set was built with 110 patients treated at the L & eacute;on B & eacute;rard Cancer Center. An independent validation cohort was built with the 85 patients treated in Dijon. The two sets were dichotomized into two classes, patients with disease control and those considered non-responders, in order to predict the disease control at 3 months. Various models were trained with different feature selection methods, and different classifiers were evaluated to build the models. In a second exploratory step, we used transcriptomics to enrich the database and develop a multiomic signature of response to immunotherapy in a 54-patient subgroup. Finally, we considered the HOT/COLD status. We first trained a radiomic model to predict the HOT/COLD status and then prototyped a hybrid model integrating radiomics and the HOT/COLD status to predict the response to immunotherapy.Results Radiomic signature for 3 months' progression-free survival (PFS) classification: The most predictive model had an area under the receiver operating characteristic curve (AUROC) of 0.94 on the training set and 0.65 on the external validation set. This model was obtained with the t-test selection method and with a support vector machine (SVM) classifier. Multiomic signature for PFS classification: The most predictive model had an AUROC of 0.95 on the training set and 0.99 on the validation set. Radiomic model to predict the HOT/COLD status: the most predictive model had an AUROC of 0.93 on the training set and 0.86 on the validation set. HOT/COLD radiomic hybrid model for PFS classification: the most predictive model had an AUROC of 0.93 on the training set and 0.90 on the validation set.Conclusion In conclusion, radiomics could be used to predict the response to immunotherapy in non-small-cell lung cancer patients. The use of transcriptomics or the HOT/COLD status, together with radiomics, may improve the working of the prediction models.
引用
收藏
页数:14
相关论文
共 38 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis [J].
Baxi, Shrujal ;
Yang, Annie ;
Gennarelli, Renee L. ;
Khan, Niloufer ;
Wang, Ziwei ;
Boyce, Lindsay ;
Korenstein, Deborah .
BMJ-BRITISH MEDICAL JOURNAL, 2018, 360
[3]   A review of guidelines for lung cancer [J].
Bironzo, Paolo ;
Di Maio, Massimo .
JOURNAL OF THORACIC DISEASE, 2018, 10 :S1556-S1563
[4]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[5]   Prediction of Histologic Neoadjuvant Chemotherapy Response in Osteosarcoma Using Pretherapeutic MRI Radiomics [J].
Bouhamama, Amine ;
Leporq, Benjamin ;
Khaled, Wassef ;
Nemeth, Angeline ;
Brahmi, Mehdi ;
Dufau, Julie ;
Marec-Berard, Perrine ;
Drape, Jean-Luc ;
Gouin, Francois ;
Bertrand-Vasseur, Axelle ;
Blay, Jean-Yves ;
Beuf, Olivier ;
Pilleul, Frank .
RADIOLOGY-IMAGING CANCER, 2022, 4 (05)
[6]   Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination [J].
Boutros, Celine ;
Tarhini, Ahmad ;
Routier, Emilie ;
Lambotte, Olivier ;
Ladurie, Francois Leroy ;
Carbonnel, Franck ;
Izzeddine, Hassane ;
Marabelle, Aurelien ;
Champiat, Stephane ;
Berdelou, Armandine ;
Lanoy, Emilie ;
Texier, Matthieu ;
Libenciuc, Cristina ;
Eggermont, Alexander M. M. ;
Soria, Jean-Charles ;
Mateus, Christine ;
Robert, Caroline .
NATURE REVIEWS CLINICAL ONCOLOGY, 2016, 13 (08) :473-486
[7]   Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer [J].
Brahmer, Julie ;
Reckamp, Karen L. ;
Baas, Paul ;
Crino, Lucio ;
Eberhardt, Wilfried E. E. ;
Poddubskaya, Elena ;
Antonia, Scott ;
Pluzanski, Adam ;
Vokes, Everett E. ;
Holgado, Esther ;
Waterhouse, David ;
Ready, Neal ;
Gainor, Justin ;
Aren Frontera, Osvaldo ;
Havel, Libor ;
Steins, Martin ;
Garassino, Marina C. ;
Aerts, Joachim G. ;
Domine, Manuel ;
Paz-Ares, Luis ;
Reck, Martin ;
Baudelet, Christine ;
Harbison, Christopher T. ;
Lestini, Brian ;
Spigel, David R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (02) :123-135
[8]   The immune microenvironment of HPV-negative oral squamous cell carcinoma from never-smokers and never-drinkers patients suggests higher clinical benefit of IDO1 and PD1/PD-L1 blockade [J].
Foy, J. -P. ;
Bertolus, C. ;
Michallet, M. -C. ;
Deneuve, S. ;
Incitti, R. ;
Bendriss-Vermare, N. ;
Albaret, M. -A. ;
Ortiz-Cuaran, S. ;
Thomas, E. ;
Colombe, A. ;
Py, C. ;
Gadot, N. ;
Michot, J. -P. ;
Fayette, J. ;
Viari, A. ;
Van den Eynde, B. ;
Goudot, P. ;
Devouassoux-Shisheboran, M. ;
Puisieux, A. ;
Caux, C. ;
Zrounba, P. ;
Lantuejoul, S. ;
Saintigny, P. .
ANNALS OF ONCOLOGY, 2017, 28 (08) :1934-1941
[9]   Datasets for gene expression profiles of head and neck squamous cell carcinoma and lung cancer treated or not by PD1/PD-L1 inhibitors [J].
Foy, Jean-Philippe ;
Karabajakian, Andy ;
Ortiz-Cuaran, Sandra ;
Boussageon, Maxime ;
Michon, Lucas ;
Bouaoud, Jebrane ;
Fekiri, Dorssafe ;
Robert, Marie ;
Baffert, Kim-Arthur ;
Herve, Genevieve ;
Quilhot, Pauline ;
Attignon, Valery ;
Girod, Angelique ;
Chaine, Andre ;
Benassarou, Mourad ;
Zrounba, Philippe ;
Caux, Christophe ;
Ghiringhelli, Francois ;
Lantuejoul, Sylvie ;
Crozes, Carole ;
Brocheriou, Isabelle ;
Perol, Maurice ;
Fayette, Jerome ;
Bertolus, Chloe ;
Saintigny, Pierre .
DATA IN BRIEF, 2022, 44
[10]   Immunologically active phenotype by gene expression profiling is associated with clinical benefit from PD-1/PD-L1 inhibitors in real-world head and neck and lung cancer patients [J].
Foy, Jean-Philippe ;
Karabajakian, Andy ;
Ortiz-Cuaran, Sandra ;
Boussageon, Maxime ;
Michon, Lucas ;
Bouaoud, Jebrane ;
Fekiri, Dorssafe ;
Robert, Marie ;
Baffert, Kim-Arthur ;
Herve, Genevieve ;
Quilhot, Pauline ;
Attignon, Valery ;
Girod, Angelique ;
Chaine, Andre ;
Benassarou, Mourad ;
Zrounba, Philippe ;
Caux, Christophe ;
Ghiringhelli, Francois ;
Lantuejoul, Sylvie ;
Crozes, Carole ;
Brocheriou, Isabelle ;
Perol, Maurice ;
Fayette, Jerome ;
Bertolus, Chloe ;
Saintigny, Pierre .
EUROPEAN JOURNAL OF CANCER, 2022, 174 :287-298