Scaling Theory of Hairy Polymer Gels with Semiflexible Strands

被引:0
作者
Zhulina, Ekaterina B. [1 ]
Uhlik, Filip [2 ]
Borisov, Oleg V. [1 ,3 ]
机构
[1] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[2] Charles Univ Prague, Fac Sci, Dept Phys & Macromol Chem, Prague 12800, Czech Republic
[3] Univ Pau & Pays Adour, Inst Sci Analyt & Physicochim Environm & Mat, CNRS, UMR 5254, F-64053 Pau, France
基金
俄罗斯科学基金会;
关键词
MOLECULAR BOTTLE-BRUSHES; PERSISTENCE LENGTH; SOLVENT-FREE; CONFORMATIONS; SUPERSOFT; MODULUS;
D O I
10.1021/acs.macromol.4c00594
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We present a theory of hairy gel with variable thermodynamic rigidities of the bottlebrush strand backbone and side chains. Scaling arguments allow for the renormalization of the bottlebrush strand with a long backbone in the linear chain of impermeable subunits-superblobs. Application of de Genne's c* theorem allows for power law dependences of the swelling coefficient Q and osmotic modulus G of hairy gels in a hollow mesh regime. A filled mesh regime predicted for hairy gels with short backbones is described as a semidilute solution of side chains. We construct scaling-type diagrams of states to delineate the different regimes of hairy gel behavior and demonstrate how scaling dependences for Q and G change upon the (i) increasing stiffness of the backbone and/or side chains and (ii) inferior solvent strength from the athermal to theta solvent. The predictions of the scaling model are contrasted against computer simulations and experiments.
引用
收藏
页码:6860 / 6874
页数:15
相关论文
共 41 条
  • [1] Inorganic Bottlebrush and Comb Polymers as a Platform for Supersoft, Solvent-Free Elastomers
    Ajvazi, Edip
    Bauer, Felix
    Strasser, Paul
    Brueggemann, Oliver
    Preuer, Rene
    Kracalik, Milan
    Hild, Sabine
    Abbasi, Mahdi
    Graz, Ingrid
    Teasdale, Ian
    [J]. ACS POLYMERS AU, 2024, 4 (01): : 56 - 65
  • [2] Birshtein T.M., 1982, POLYM SCI USSR, V24, P2416, DOI [10.1016/0032-3950(82)90114-9, DOI 10.1016/0032-3950(82)90114-9]
  • [3] BIRSHTEIN TM, 1987, VYSOKOMOL SOEDIN A+, V29, P1169
  • [4] Daniel WFM, 2016, NAT MATER, V15, P183, DOI [10.1038/NMAT4508, 10.1038/nmat4508]
  • [5] de Gennes P.-G., 1976, SCALING CONCEPTS INP
  • [6] Size and persistence length of molecular bottle-brushes by Monte Carlo simulations
    Elli, S
    Ganazzoli, F
    Timoshenko, EG
    Kuznetsov, YA
    Connolly, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (13) : 6257 - 6267
  • [7] Bending rigidity and induced persistence length of molecular bottle brushes: A self-consistent-field theory
    Feuz, L
    Leermakers, FAM
    Textor, M
    Borisov, O
    [J]. MACROMOLECULES, 2005, 38 (21) : 8891 - 8901
  • [8] Statistical mechanics of cross-linked polymer networks II Swelling
    Flory, PJ
    Rehner, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1943, 11 (11) : 521 - 526
  • [9] Estimation of Persistence Lengths of Semiflexible Polymers: Insight from Simulations
    Hsu, Hsiao-Ping
    Paul, Wolfgang
    Binder, Kurt
    [J]. POLYMER SCIENCE SERIES C, 2013, 55 (01) : 39 - 59
  • [10] Standard Definitions of Persistence Length Do Not Describe the Local "Intrinsic" Stiffness of Real Polymer Chains
    Hsu, Hsiao-Ping
    Paul, Wolfgang
    Binder, Kurt
    [J]. MACROMOLECULES, 2010, 43 (06) : 3094 - 3102