Rawnsley's ε-Function on a Class of Bounded Hartogs Domains and its Applications

被引:0
作者
Zhang, Shuo [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Rawnsley's epsilon-function; Generalized Hartogs triangle; Balanced metric; Berezin quantization; CANONICAL METRICS; SCALAR CURVATURE; QUANTIZATION; ASYMPTOTICS; KERNELS;
D O I
10.1007/s11785-024-01562-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the hypergeometric functions, we obtain the formula for the Rawnsley's epsilon-function of the Kahler manifold (H-{ki},gamma(n),g(mu,nu)) with mu is an element of(R+)(l )and nu is an element of (R+)(n-k), where H-{ki},gamma(n) is a class of bounded Hartogs domains defined by H-{ki},gamma(n):={z is an element of C-n:max(1 <= i <= l )& Vert;(z) over tilde(i)& Vert; < |z(k+1)|(gamma )< ... < |z(n)|gamma<1} and g(mu,nu) isa Kahlermetric associated with the Kahler potential -& sum;(l)(i)(=1)mu(i )ln (|z(k+1)|(2 gamma)- & Vert;(z) over tilde(i)& Vert;(2)) - & sum;(n )(j=k+1)nu(j )ln (|z(j+1)|(2)-|z(j)|(2)). As applications of the main result, we obtainthe existence of balanced metrics onH({ki},gamma)(n)and prove that H-{ki},gamma(n) admits a Berezin quantization.
引用
收藏
页数:21
相关论文
共 35 条
[1]   Moment maps, scalar curvature and quantization of Kahler manifolds [J].
Arezzo, C ;
Loi, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (03) :543-559
[2]  
BEREZIN FA, 1974, MATH USSR IZV, V8, P1109
[3]   Canonical metrics on generalized Hartogs triangles [J].
Bi, Enchao ;
Hou, Zelin .
COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) :305-313
[4]   Balanced metrics and Berezin quantization on Hartogs triangles [J].
Bi, Enchao ;
Su, Guicong .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (01) :273-285
[5]   Rawnsley's ε-function on some Hartogs type domains over bounded symmetric domains and its applications [J].
Bi, Enchao ;
Feng, Zhiming ;
Su, Guicong ;
Tu, Zhenhan .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 135 :187-203
[6]   Balanced metrics on the Fock-Bargmann-Hartogs domains [J].
Bi, Enchao ;
Feng, Zhiming ;
Tu, Zhenhan .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (04) :349-359
[7]  
Catlin D, 1999, TRENDS MATH, P1
[8]   The Lp boundedness of the Bergman projection for a class of bounded. Hartogs domains [J].
Chen, Liwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) :598-610
[9]   AN EXPLICIT COMPUTATION OF THE BERGMAN-KERNEL FUNCTION [J].
D'ANGELO, JP .
JOURNAL OF GEOMETRIC ANALYSIS, 1994, 4 (01) :23-34
[10]  
Donaldson SK, 2001, J DIFFER GEOM, V59, P479, DOI 10.4310/jdg/1090349449