Box-Behnken Response Surface Design for the Optimization of a High-Performance Electrochemical Dopamine Sensor Based on Novel Nano-Ag Doped Matériaux Institut Lavoisier Metal-Organic Framework 101 (MIL-101-Cr) Composite Modified Glassy Carbon Electrode

被引:5
作者
Wannassi, Jassem [1 ]
Missaoui, Nadhem [1 ]
Tachouaft, Chalal [2 ]
Mabrouk, Chama [1 ]
Autret-lambert, Cecile [3 ]
Bellali, Saher [1 ]
Echouchene, Fraj [4 ,5 ]
Barhoumi, Houcine [1 ]
Anouti, Meriem [2 ]
Kahri, Hamza [1 ,2 ]
机构
[1] Univ Monastir, Fac Sci, Lab Interfaces & Adv Mat, Monastir 5019, Tunisia
[2] Univ Tours, Lab PCM2E, Parc Grandmont, F-37200 Tours, France
[3] Univ Tours, Univ Francois Rabelais, GREMAN,UFR Sci & Tech, UMR CNRS 7341, Parc Grandmont, F-37200 Tours, France
[4] Univ Monastir, Fac Sci, Lab Elect & Microelect LR99ES30, Monastir, Tunisia
[5] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Sousse, Tunisia
关键词
dopamine detection; MIL-101; Ag nanoparticles; box-behnken design (BBD); differential pulse voltammetry (DPV); GRAPHENE; NANOCOMPOSITE; ACETAMINOPHEN; NANOPARTICLES; ENCAPSULATION; NANOTUBES;
D O I
10.1149/1945-7111/ad798a
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The combination of metal-organic frameworks (MOFs) and metal nanoparticles offers great prospects for improving the electrochemical properties of sensors. In this paper, silver (Ag) nanoparticle-doped metal-organic framework (MIL-101) composites (Ag-MIL-101) were prepared by ultrasonic treatment of MIL-101 and the reduction of the metal precursor (AgNO3) within the MIL-101 material. X-ray diffraction patterns confirmed the formation of Ag-MIL-101(Cr). The resulting material was used to construct a new electrochemical sensor for the reliable detection of dopamine. The electrochemical response of the developed sensor toward dopamine was evaluated using differential pulse voltammetry. A Box-Behnken design was performed, and response surface methodology was used to study the influence of different parameters on dopamine detection. The response of the modified electrode for dopamine detection was linear in the range from 0.02 mu M to 10 mu M, and the detection limit was 0.02 mu M (S/N = 3). Additionally, it showed high selectivity in the presence of urea, uric acid, ascorbic acid, and L-arginine. Due to its low cost, easy process, and great performance, this Ag-MIL-101/GCE electrode can be a good candidate for the fabrication of a non-enzymatic dopamine sensor.
引用
收藏
页数:14
相关论文
共 77 条
  • [1] Ahmed T. B., 2024, Theranostic Applications of Nanotechnology in Neurological Disorders, pp. 251
  • [2] Akhlaghi Amir Ali, 2024, ECS Sensors Plus, V3, DOI 10.1149/2754-2726/ad304a
  • [3] Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode
    Alothman, Zeid Abdullah
    Bukhari, Nausheen
    Wabaidur, Saikh Mohammad
    Haider, Sajjad
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2010, 146 (01): : 314 - 320
  • [4] Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide
    Anbia, Mansoor
    Hoseini, Vahid
    [J]. CHEMICAL ENGINEERING JOURNAL, 2012, 191 : 326 - 330
  • [5] Ultrasensitive electrochemical detection of dopamine from human serum samples by Nb2CTx-MoS2 hetero structures
    Ankitha, Menon
    Shabana, Neermunda
    Arjun, Ajith Mohan
    Muhsin, Punnoli
    Rasheed, Pathath Abdul
    [J]. MICROCHEMICAL JOURNAL, 2023, 187
  • [6] A dopamine electrochemical sensor based on a platinum-silver graphene nanocomposite modified electrode
    Anuar, Nadzirah Sofia
    Basirun, Wan Jeffrey
    Shalauddin, Md
    Akhter, Shamima
    [J]. RSC ADVANCES, 2020, 10 (29) : 17336 - 17344
  • [7] Ayman M., 2024, Appl. Organomet. Chem, V38, P4
  • [8] Ayman M., 2024, Neural Comput. Appl, V36, P1
  • [9] Baghbamidi SE, 2014, ANAL BIOANAL ELECTRO, V6, P634
  • [10] Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties
    Bromberg, Lev
    Diao, Ying
    Wu, Huimeng
    Speakman, Scott A.
    Hatton, T. Alan
    [J]. CHEMISTRY OF MATERIALS, 2012, 24 (09) : 1664 - 1675