Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics

被引:51
作者
Gulati, Gunsagar S. [1 ]
D'Silva, Jeremy Philip [2 ]
Liu, Yunhe [3 ]
Wang, Linghua [3 ,4 ]
Newman, Aaron M. [2 ,5 ,6 ,7 ]
机构
[1] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Genom Med, Houston, TX USA
[4] Univ Texas MD Anderson Canc Ctr UTHealth Houston, Grad Sch Biomed Sci, Houston, TX USA
[5] Stanford Univ, Inst Stem Cell Biol & Regenerat Med, Stanford, CA 94305 USA
[6] Stanford Univ, Stanford Canc Inst, Stanford, CA 94305 USA
[7] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
基金
美国国家科学基金会;
关键词
HEMATOPOIETIC STEM-CELLS; GENE-EXPRESSION; ATLAS; REVEALS; IMPACT; IDENTIFICATION; DISSOCIATION; SELECTION; NETWORK; HEART;
D O I
10.1038/s41580-024-00768-2
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 292 条
[91]   Missing data and technical variability in single-cell RNA-sequencing experiments [J].
Hicks, Stephanie C. ;
Townes, F. William ;
Teng, Mingxiang ;
Irizarry, Rafael A. .
BIOSTATISTICS, 2018, 19 (04) :562-578
[92]   Efficient integration of heterogeneous single-cell transcriptomes using Scanorama [J].
Hie, Brian ;
Bryson, Bryan ;
Berger, Bonnie .
NATURE BIOTECHNOLOGY, 2019, 37 (06) :685-+
[93]   A benchmark of batch-effect correction methods for single-cell RNA sequencing data [J].
Hoa Thi Nhu Tran ;
Ang, Kok Siong ;
Chevrier, Marion ;
Zhang, Xiaomeng ;
Lee, Nicole Yee Shin ;
Goh, Michelle ;
Chen, Jinmiao .
GENOME BIOLOGY, 2020, 21 (01)
[94]   Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis [J].
Hou, Wenpin ;
Ji, Zhicheng .
NATURE METHODS, 2024, 21 (04) :1462-1465
[95]   Phenotypic plasticity and genetic control in colorectal cancer evolution [J].
Househam, Jacob ;
Heide, Timon ;
Cresswell, George D. ;
Spiteri, Inmaculada ;
Kimberley, Chris ;
Zapata, Luis ;
Lynn, Claire ;
James, Chela ;
Mossner, Maximilian ;
Fernandez-Mateos, Javier ;
Vinceti, Alessandro ;
Baker, Ann-Marie ;
Gabbutt, Calum ;
Berner, Alison ;
Schmidt, Melissa ;
Chen, Bingjie ;
Lakatos, Eszter ;
Gunasri, Vinaya ;
Nichol, Daniel ;
Costa, Helena ;
Mitchinson, Miriam ;
Ramazzotti, Daniele ;
Werner, Benjamin ;
Iorio, Francesco ;
Jansen, Marnix ;
Caravagna, Giulio ;
Barnes, Chris P. ;
Shibata, Darryl ;
Bridgewater, John ;
Rodriguez-Justo, Manuel ;
Magnani, Luca ;
Sottoriva, Andrea ;
Graham, Trevor A. .
NATURE, 2022, 611 (7937) :744-+
[96]   Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA [J].
Hu, Jian ;
Coleman, Kyle ;
Zhang, Daiwei ;
Lee, Edward B. ;
Kadara, Humam ;
Wang, Linghua ;
Li, Mingyao .
CELL SYSTEMS, 2023, 14 (05) :404-+
[97]   Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes [J].
Hu, Yuxuan ;
Rong, Jiazhen ;
Xu, Yafei ;
Xie, Runzhi ;
Peng, Jacqueline ;
Gao, Lin ;
Tan, Kai .
NATURE METHODS, 2024, 21 (02) :267-278
[98]  
Hutson Matthew, 2023, Nature, DOI [10.1038/d41586-023-00053-w, 10.1038/d41586-023-00053-w]
[99]   Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective [J].
Huyghe, Aurelia ;
Trajkova, Aneta ;
Lavial, Fabrice .
TRENDS IN CELL BIOLOGY, 2024, 34 (03) :255-267
[100]   Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data [J].
Ianevski, Aleksandr ;
Giri, Anil K. ;
Aittokallio, Tero .
NATURE COMMUNICATIONS, 2022, 13 (01)