Exploring metal-organic framework phase change materials via machine learning approach

被引:0
|
作者
Shirobokov, Vladimir P. [1 ]
Karsakov, Grigory, V [1 ]
Milichko, Valentin A. [1 ,2 ]
机构
[1] ITMO Univ, Fac Phys, Sch Phys & Engn, St Petersburg, Russia
[2] Univ Lorraine, Inst Jean Lamour, Nancy, France
来源
MACHINE LEARNING IN PHOTONICS | 2024年 / 13017卷
基金
俄罗斯科学基金会;
关键词
Machine learning; metal-organic frameworks; photonics; structural transformation;
D O I
10.1117/12.3016142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study focuses on using an artificial intelligence to explore metal-organic framework (MOFs) supporting the structural transformations (for instance, phase change, structural breathing, and crystal-to-crystal phase transition). Since the most MOFs possess flexible and adaptive structure, they are widely used as smart materials for optical keys, triggers, switchers, and even information encrypts. However, 100.000 potential MOFs are strongly complicated the search of specific MOF for targeted applications. Here, we report on a unique database of MOFs demonstrating the structural transformation occurring between different space groups or crystal symmetries. Using a autoencoder and classifier to predict the structural transformations, we build a link between the initial MOF structure and the potential to be switched.* The results pave the way to predict and design an efficient phase change MOFs for potential application in optical data processing and storage.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning
    Karsakov, Grigory V.
    Shirobokov, Vladimir P.
    Kulakova, Alena
    Milichko, Valentin A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (11): : 3089 - 3095
  • [2] Metal-Organic Framework-based Phase Change Materials for Thermal Energy Storage
    Chen, Xiao
    Gao, Hongyi
    Tang, Zhaodi
    Wang, Ge
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [3] Machine Learning Approach for Prediction and Search: Application to Methane Storage in a Metal-Organic Framework
    Ohno, Hiroshi
    Mukae, Yusuke
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (42): : 23963 - 23968
  • [4] Drug delivery system tailoring via metal-organic framework property prediction using machine learning: A disregarded approach
    Pouyanfar, Niki
    Ahmadi, Mahnaz
    Ayyoubzadeh, Seyed Mohammad
    Ghorbani-Bidkorpeh, Fatemeh
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [5] Superprotonic Phase Change to a Robust Phosphonate Metal-Organic Framework
    Fard, Zohreh Hassanzadeh
    Wong, Norman E.
    Malliakas, Christos D.
    Ramaswamy, Padmini
    Taylor, Jared M.
    Otsubo, Kazuya
    Shimizu, George K. H.
    CHEMISTRY OF MATERIALS, 2018, 30 (02) : 314 - 318
  • [6] Advanced Photoresponsive Materials Using the Metal-Organic Framework Approach
    Haldar, Ritesh
    Heinke, Lars
    Woell, Christof
    ADVANCED MATERIALS, 2020, 32 (20)
  • [7] Nanocasting in metal-organic framework materials
    Steins, Andreas
    Malonzo, Camille
    Wang, Zhao
    Zhao, Wenyang
    Webber, Thomas
    Penn, R. Lee
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [8] Functional metal-organic framework materials
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [9] Metal-organic framework nanocomposite materials
    Huo, Fengwei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [10] Metal-organic framework materials as catalysts
    Lee, JeongYong
    Farha, Omar K.
    Roberts, John
    Scheidt, Karl A.
    Nguyen, SonBinh T.
    Hupp, Joseph T.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1450 - 1459