Simple and Efficient Synthesis of Ruthenium(III) PEDOT:PSS Complexes for High-Performance Stretchable and Transparent Supercapacitors

被引:0
作者
Liu, Guiming [1 ]
Huang, Zhao [1 ]
Xu, Jiujie [1 ]
Zhang, Bowen [2 ]
Lin, Tiesong [1 ]
He, Peng [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Precis Welding & Joining Mat & Struc, Harbin 150001, Peoples R China
[2] Tiangong Univ, Sch Elect Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
supercapacitors; ruthenium; PEDOT:PSS; complexes; stretchable; transparent; SULFONATE) FILM; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); CONDUCTIVITY; POLYMER; STATE; OXIDE; ENHANCEMENT; CAPACITANCE; ELECTRODES; LAYER;
D O I
10.3390/nano14100866
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the evolving landscape of portable electronics, there is a critical demand for components that meld stretchability with optical transparency, especially in supercapacitors. Traditional materials fall short in harmonizing conductivity, stretchability, transparency, and capacity. Although poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) stands out as an exemplary candidate, further performance enhancements are necessary to meet the demands of practical applications. This study presents an innovative and effective method for enhancing electrochemical properties by homogeneously incorporating Ru(III) into PEDOT:PSS. These Ru(III) PEDOT:PSS complexes are readily synthesized by dipping PEDOT:PSS films in RuCl3 solution for no longer than one minute, leveraging the high specific capacitance of Ru(III) while minimizing interference with transmittance. The supercapacitor made with this Ru(III) PEDOT:PSS complex demonstrated an areal capacitance of 1.62 mF cm(-2) at a transmittance of 73.5%, which was 155% higher than that of the supercapacitor made with PEDOT:PSS under comparable transparency. Notably, the supercapacitor retained 87.8% of its initial capacitance even under 20% tensile strain across 20,000 cycles. This work presents a blueprint for developing stretchable and transparent supercapacitors, marking a significant stride toward next-generation wearable electronics.
引用
收藏
页数:17
相关论文
共 61 条
[1]   Enhancement in vanadium redox flow battery performance using reduced graphene oxide nanofluid electrolyte [J].
Aberoumand, Sadegh ;
Dubal, Deepak ;
Woodfield, Peter ;
Parsa, Seyed Masoud ;
Mahale, Kiran ;
Pham, Hong Duc ;
Tung, Tran ;
Nguyen, Hong-Quan ;
Dao, Dzung Viet .
JOURNAL OF ENERGY STORAGE, 2023, 72
[2]   Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells [J].
Alemu, Desalegn ;
Wei, Hung-Yu ;
Ho, Kuo-Chuan ;
Chu, Chih-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9662-9671
[3]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[4]   Benefits, Problems, and Solutions of Silver Nanowire Transparent Conductive Electrodes in Indium Tin Oxide (ITO)-Free Flexible Solar Cells [J].
Azani, Mohammad-Reza ;
Hassanpour, Azin ;
Torres, Tomas .
ADVANCED ENERGY MATERIALS, 2020, 10 (48)
[5]   Advances in transparent and stretchable strain sensors [J].
Chang, Xiaohua ;
Chen, Liangren ;
Chen, Jianwen ;
Zhu, Yutian ;
Guo, Zhanhu .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2021, 4 (03) :435-450
[6]   Synthesis and electrochemical capacitance of core-shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites [J].
Chen, Li ;
Yuan, Changzhou ;
Dou, Hui ;
Gao, Bo ;
Chen, Shengyao ;
Zhang, Xiaogang .
ELECTROCHIMICA ACTA, 2009, 54 (08) :2335-2341
[7]   Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications [J].
Chen, Liyang ;
Khan, Arshad ;
Dai, Shuqin ;
Bermak, Amine ;
Li, Wen-Di .
ADVANCED SCIENCE, 2023, 10 (35)
[8]   High-performance free-standing PEDOT: PSS electrodes for flexible and transparent all-solid-state supercapacitors [J].
Cheng, Tao ;
Zhang, Yi-Zhou ;
Zhang, Jian-Dong ;
Lai, Wen-Yong ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (27) :10493-10499
[9]   Screen-Printable and Flexible RuO2 Nanoparticle-Decorated PEDOT:PSS/Graphene Nanocomposite with Enhanced Electrical and Electrochemical Performances for High-Capacity Supercapacitor [J].
Cho, Sunghun ;
Kim, Minkyu ;
Jang, Jyongsik .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (19) :10213-10227
[10]   Modification of PEDOT: PSS as hole injection layer in polymer LEDs [J].
de Kok, MM ;
Buechel, M ;
Vulto, SIE ;
van de Weijer, P ;
Meulenkamp, EA ;
de Winter, SHPM ;
Mank, AJG ;
Vorstenbosch, HJM ;
Weijtens, CHL ;
van Elsbergen, V .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2004, 201 (06) :1342-1359