Sharp local well-posedness for quasilinear wave equations with spherical symmetry

被引:0
作者
Wang, Chengbo [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
关键词
Quasilinear wave equation; local energy estimates; KSS estimates; trace estimates; fractional chain rule; fractional Leibniz rule; unconditional uniqueness; almost global existence; LOW-REGULARITY SOLUTIONS; GLOBAL EXISTENCE; LIFE-SPAN; HYPERBOLIC SYSTEMS; RADIAL SOLUTIONS; COUNTEREXAMPLE; CONJECTURE;
D O I
10.4171/JEMS/1286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a sharp local well-posedness result for spherically symmetric solutions to quasilinear wave equations with rough initial data, when the spatial dimension is three or higher. Our approach is based on Morawetz type local energy estimates with fractional regularity for linear wave equations with variable C-1 coefficients, which rely on the multiplier method, weighted Littlewood-Paley theory, duality and interpolation. Together with weighted linear and nonlinear estimates (including weighted trace estimates, Hardy's inequality, a fractional chain rule and a fractional Leibniz rule) which are adapted to the problem, the well-posedness result is proved by iteration. In addition, our argument yields almost global existence for n = 3 and global existence for n >= 4 when the initial data are small and spherically symmetric with almost critical Sobolev regularity.
引用
收藏
页码:4459 / 4520
页数:62
相关论文
共 52 条
[11]  
Hidano K, 2006, DIFFER INTEGRAL EQU, V19, P961
[12]   Weighted fractional chain rule and nonlinear wave equations with minimal regularity [J].
Hidano, Kunio ;
Jiang, Jin-Cheng ;
Lee, Sanghyuk ;
Wang, Chengbo .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (02) :341-356
[13]   Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations [J].
Hidano, Kunio ;
Wang, Chengbo ;
Yokoyama, Kazuyoshi .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :667-694
[14]   The Glassey conjecture with radially symmetric data [J].
Hidano, Kunio ;
Wang, Chengbo ;
Yokoyama, Kazuyoshi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 98 (05) :518-541
[15]  
Hidano K, 2012, ADV DIFFERENTIAL EQU, V17, P267
[16]  
HUGHES TJR, 1977, ARCH RATION MECH AN, V63, P273, DOI 10.1007/BF00251584
[17]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51
[18]  
Kapitanski ̆i L. V., 1989, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.Steklov., V171, P106
[19]  
Kapitanskii L.V., 1989, ZAP NAUC SEMIN LOMI, V171, P185
[20]   Almost global existence for some semilinear wave equations [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :265-279