Boundary-Aware Uncertainty for Automatic Caliper Placement

被引:0
作者
Sathish, Rachana [1 ]
Venkataramani, Rahul [1 ]
Aladahalli, Chandan [1 ]
Shriram, K. S. [1 ]
Sudhakar, Prasad [1 ]
机构
[1] GE HealthCare, Edison AI Adv Technol Grp, Bengaluru, India
来源
MEDICAL IMAGING 2024: IMAGE PROCESSING | 2024年 / 12926卷
关键词
ultrasound; renal biometry; segmentation; uncertainty; deep learning; explainable AI;
D O I
10.1117/12.3007645
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Caliper placement is an integral part of ultrasound clinical workflow, e.g., kidney volume measurement. Automated approaches utilize anatomical segmentation followed by application-specific caliper placement. Robust clinical outcomes require confidence/uncertainty associated with such predictions be indicated. Conventional methods estimating uncertainty (MC Dropout, Deep Ensembles) with high computational load are impractical for deployment. We exploit the existence of uncertainty only on boundary pixels for any predicted segmentation. We utilize disagreement between independent predictions - region segmentation edge and direct boundary prediction, to identify uncertainty on anatomical boundary. We demonstrate our Boundary-Aware Segmentation Uncertainty (BASU) on cross-sections of kidney, correlating with ground-truth and clinician's intuitions.
引用
收藏
页数:4
相关论文
共 4 条
[1]   How reliable is renal ultrasound to measure renal length and volume in patients with chronic kidney disease compared with magnetic resonance imaging? [J].
Braconnier, Philippe ;
Piskunowicz, Maciej ;
Vakilzadeh, Nima ;
Mueller, Marie-Eve ;
Zuercher, Emilie ;
Burnier, Michel ;
Pruijm, Menno .
ACTA RADIOLOGICA, 2020, 61 (01) :117-127
[2]  
Fort S, 2020, Arxiv, DOI [arXiv:1912.02757, 10.48550/arXiv.1912.02757, DOI 10.48550/ARXIV.1912.02757]
[3]  
Gal Y, 2016, PR MACH LEARN RES, V48
[4]   Stochastic Weight Perturbations Along the Hessian: A Plug-and-Play Method to Compute Uncertainty [J].
Ravishankar, Hariharan ;
Patil, Rohan ;
Anand, Deepa ;
Singhal, Vanika ;
Agrawal, Utkarsh ;
Venkataramani, Rahul ;
Sudhakar, Prasad .
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, 2022, 13563 :80-88