Co-insertion of K+ and Ca2+ in vanadium oxide as high-performance aqueous zinc-ion battery cathode material

被引:7
|
作者
Li, Zhaoao [1 ,2 ]
Yang, Linyu [1 ,2 ]
Wang, Shuying [1 ,2 ]
Zhu, Kunjie [3 ]
Li, Haibing [4 ]
机构
[1] Xinjiang Univ, Xinjiang Key Lab Solid State Phys & Devices, Urumqi 830046, Peoples R China
[2] Xin Jiang Univ, Sch Phys & technol, Urumqi 830046, Xinjiang, Peoples R China
[3] Univ Shanghai Sci & Technol, China Inst Energy Mat Sci, Shanghai 200093, Peoples R China
[4] China Jiliang Univ, Coll Modern Sci & Technol, Jinhua 322000, Peoples R China
基金
中国国家自然科学基金;
关键词
K0.02Ca0.18V2O5 center dot 0.7H(2)O; Zinc ion battery; Co-inserting; HIGH-ENERGY; INTERCALATION; V2O5;
D O I
10.1016/j.jallcom.2024.174589
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inserting metal ions into vanadium oxides can effectively improve their electrochemical properties, and the insertion of different single metal ions into vanadium-based compounds can enhance their electrochemical performance in different ways. Moreover, the insertion of multiple metal ions into vanadium-based compounds may provide a synergistic effect. Therefore, in this work a K0.02Ca0.18V2O5 center dot 0.7H(2)O (KCaVOH) cathode material was obtained by co-inserting the monovalent metal ion K+ and the divalent metal ion Ca2+ into vanadium oxide through a one-step hydrothermal method. The insertion of K+ enhances the structural stability of the cathode material, while the insertion of Ca2+ increases the layer spacing between the V-O layers and improves the specific capacity of the cathode material. The co-insertion of K+ and Ca2+ effectively enhances the electrochemical performance of V2O5 center dot 1.6H(2)O, and the KCaVOH cathode provides a high specific capacity of 410 mAh center dot g(-1) at 0.3 A center dot g(-1). Moreover, the capacity still reaches 265 mAh center dot g(-1) after 1800 cycles at 5 A center dot g(-1). This method provides a strategy for significantly enhancing the electrochemical performance of vanadium-based cathode materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Construction of vanadium oxide cathode material with high performance and stability and its application in aqueous zinc-ion battery
    Liu, Junqi
    Hu, Hao
    Yuan, Tongtong
    Zhao, Pengbo
    Liu, Hangchen
    Cheng, Haoyan
    APPLIED SURFACE SCIENCE, 2024, 648
  • [2] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [3] Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    Golberg, Dmitri, V
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4159 - 4169
  • [4] Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods
    Qi, Yae
    Huang, Jianhang
    Yan, Lei
    Cao, Yongjie
    Xu, Jie
    Bin, Duan
    Liao, Mochou
    Xia, Yongyao
    CHEMICAL ENGINEERING JOURNAL, 2022, 442
  • [5] Aluminium-doped vanadium nitride as cathode material for high-performance aqueous zinc-ion batteries
    Chen, Jiangjin
    Guo, Keyan
    Ren, Tianzi
    Feng, Guodong
    Guo, Wen
    Bao, Fuxi
    JOURNAL OF POWER SOURCES, 2025, 626
  • [6] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Guo, Ying
    Liu, Yang
    Li, Kai
    Gong, Yun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (10) : 2579 - 2592
  • [7] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Ying Guo
    Yang Liu
    Kai Li
    Yun Gong
    Journal of Solid State Electrochemistry, 2023, 27 : 2579 - 2592
  • [8] Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries
    He, Pan
    Zhang, Guobin
    Liao, Xiaobin
    Yan, Mengyu
    Xu, Xu
    An, Qinyou
    Liu, Jun
    Mai, Liqiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [9] MnO2@Co3O4 heterostructure composite as high-performance cathode material for rechargeable aqueous zinc-ion battery
    Sun, Jianhang
    Zhang, Pengchao
    Ba, Ying
    Sun, Juncai
    IONICS, 2023, 29 (05) : 1913 - 1921
  • [10] MnO2@Co3O4 heterostructure composite as high-performance cathode material for rechargeable aqueous zinc-ion battery
    Jianhang Sun
    Pengchao Zhang
    Ying Ba
    Juncai Sun
    Ionics, 2023, 29 : 1913 - 1921