Zn promoted GaZrOx Ternary Solid Solution Oxide Combined with SAPO-34 Effectively Converts CO2 to Light Olefins with Low CO Selectivity

被引:0
|
作者
Liu, Shike [1 ,2 ,3 ]
Yang, Kun [1 ,2 ,3 ]
Ren, Qixia [1 ,2 ,3 ]
Liu, Fei [1 ,2 ,3 ]
Yao, Mengqin [1 ,2 ,3 ]
Ma, Jun [1 ,2 ,3 ]
Geng, Shuo [1 ,2 ,3 ]
Cao, Jianxin [1 ,2 ,3 ]
机构
[1] Guizhou Univ, Sch Chem & Chem Engn, Dept Chem Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Guizhou Key Lab Green Chem & Clean Energy Technol, Guiyang 550025, Guizhou, Peoples R China
[3] Guizhou Univ, Engn Res Ctr Efficient Utilizat Ind Waste, Guiyang 550025, Guizhou, Peoples R China
关键词
CO2; hydrogenation; Light olefins; Tandem catalysts; Zn doping; ZnGaZrOx ternary oxides; CARBON-DIOXIDE; METHANOL SYNTHESIS; INDIUM OXIDE; HYDROGENATION; CATALYSTS; PROPENE; SYNGAS; H-2;
D O I
10.1002/chem.202400223
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We proposed a new strategy for CO2 hydrogenation to prepare light olefins by introducing Zn into GaZrOx to construct ZnGaZrOx ternary oxides, which was combined with SAPO-34 to prepare a high-performance ZnGaZrOx/SAPO-34 tandem catalyst for CO2 hydrogenation to light olefins. By optimizing the Zn doping content, the ratio and mode of the two-phase composite, and the process conditions, the 3.5 %ZnGaZrOx/SAPO-34 tandem catalyst showed excellent catalytic performance and good high-temperature inhibition of the reverse water-gas shift (RWGS) reaction. The catalyst achieved 26.6 % CO2 conversion, 82.1 % C-2(=)-C-4(=) selectivity and 11.8 % light olefins yield. The ZnGaZrOx formed by introducing an appropriate amount of Zn into GaZrOx significantly enhanced the spillover H-2 effect and also induced the generation of abundant oxygen vacancies to effectively promote the activation of CO2. Importantly, the RWGS reaction was also significantly suppressed at high temperatures, with the CO selectivity being only 46.1 % at 390 degrees C.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Effective conversion of CO2 into lower olefins over GaCrZrOx/SAPO-34 tandem catalysts
    Wang, Ying
    Liu, Fei
    Yao, Mengqin
    Ma, Jun
    Geng, Shuo
    Cao, Jianxin
    Wang, Xiaodan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
  • [12] Sustainable production of light olefins from greenhouse gas CO2 over SAPO-34 supported modified cerium oxide
    Ghasemi, Mostafa
    Mohammadi, Majid
    Sedighi, Mehdi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 297 (297)
  • [13] Modulating the electronic interaction of ZnFemCrOx/SAPO-34 to boost CO2 hydrogenation to light olefins
    Cao, Zhifan
    Guo, Xiaohong
    Wang, Xiaoyue
    Shi, Peixiang
    Yan, Zhiqiang
    Ban, Hongyan
    Yao, Ruwei
    Li, Yanchun
    Li, Congming
    MOLECULAR CATALYSIS, 2024, 569
  • [14] Boosting CO2 hydrogenation to light olefins with low CO selectivity through promoting HCOO* intermediates on Fe-ZnGa2O4/SAPO-34
    Sun, Zheyi
    Gao, Zihao
    Ma, Rongting
    Xu, Qingling
    Shao, Bin
    Liu, Honglai
    Hu, Jun
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 358
  • [15] Doping SiO2 in CuO-ZnO-ZrO2/SAPO-34 Composite for the CO2 Hydrogenation to Light Olefins
    Tang, Xiaohua
    Mao, Yuzhong
    Zhou, Ning
    Liu, Rong
    Zha, Fei
    Tian, Haifeng
    Chang, Yue
    CHEMISTRYSELECT, 2023, 8 (13):
  • [16] Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite
    Wang, Sen
    Wang, Pengfei
    Qin, Zhangfeng
    Yan, Wenjun
    Dong, Mei
    Li, Junfen
    Wang, Jianguo
    Fan, Weibin
    JOURNAL OF CATALYSIS, 2020, 391 : 459 - 470
  • [17] Highly efficient ZnCeZrOx/SAPO-34 catalyst for the direct conversion of CO2 into light olefins under mild reaction conditions
    Zhang, Li
    Geng, Bo
    Wang, Pengfei
    Kang, Hefei
    Xiao, He
    Jia, Jianfeng
    Wu, Haishun
    APPLIED CATALYSIS A-GENERAL, 2023, 657
  • [18] Electronic interaction promoting CO2 hydrogenation to light olefins over ZnZrOx/SAPO-34 catalyst
    Zhao, Yongjie
    Shi, Peixiang
    Wang, Xiaoyue
    Guo, Xiaohong
    Yao, Ruwei
    Li, Yanchun
    Jia, Qian
    Ban, Hongyan
    Li, Lei
    Li, Congming
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [19] Direct CO2 hydrogenation to light olefins over ZnZrOx mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template
    Tian, Pan
    Zhan, Guowu
    Tian, Jian
    Tan, Kok Bing
    Guo, Meiting
    Han, Yating
    Fu, Tingjun
    Huang, Jiale
    Li, Qingbiao
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 315
  • [20] CO2 hydrogenation to light olefins over Cu-CeO2/SAPO-34 catalysts: Product distribution and optimization
    Sedighi, Mehdi
    Mohammadi, Majid
    JOURNAL OF CO2 UTILIZATION, 2020, 35 : 236 - 244