An online evaluation model for mechanical/thermal states in prismatic lithium-ion batteries under fast charging/discharging

被引:2
|
作者
Huang, Zhiliang [1 ]
Wang, Huaixing [2 ]
Zou, Wei [1 ]
Zhang, Rongchuan [3 ]
Wang, Yuhan [1 ]
Chen, Jie [2 ]
Wu, Shengben [2 ]
机构
[1] Hunan City Univ, Key Lab Energy Monitoring & Edge Comp Smart City, Yiyang 413002, Peoples R China
[2] Huizhou Liwinon New Energy Technol Co Ltd, Huizhou 516123, Peoples R China
[3] Wuhan Second Ship Design & Res Inst, Wuhan 430200, Peoples R China
关键词
Lithium-ion battery; Heat generation; Gas production; Mechanical stress; Online state evaluation; Fast charge/discharge; THERMAL-MODEL; EVOLUTION; CELLS;
D O I
10.1016/j.energy.2024.131877
中图分类号
O414.1 [热力学];
学科分类号
摘要
Conventional online evaluation methods for the mechanical/thermal behaviour of lithium-ion batteries fall short in terms of efficiency and accuracy, especially under extreme conditions coupling high-temperature and fast charging/discharging. This paper proposes an electrochemical/thermal/mechanical analytical model for prismatic lithium-ion batteries to assess their temperature, stress, deformation, and gas evolution. An electrochemical submodel is formulated, covering the lithium intercalation/deintercalation, solid-electrolyte interphase (SEI) decomposition/regeneration, and electrolyte decomposition. A thermal submodel is created to simulate heat transfer between the cell and its environment, considering reaction and Joule heating as heat sources. A mechanical submodel is developed to reveal the effects of nonlinear elastic constitutive properties and the mechanical/thermal/electrical states on cell deformation and stress, incorporating the reaction gas evolution. A coupled multidisciplinary analytical model is formed, using the state variables of temperature, stress, and deformation to link the submodels. The model 's performance was validated against numerical and experimental results under high-temperature charge/discharge cycle conditions, demonstrating efficiency at the level of seconds, temperature errors below 0.6 %, and pressure errors below 4.6 %. The advantages in efficiency, accuracy, and applicability highlight its excellent prospects in energy storage and electric vehicle applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] An improved mathematical model for State of Health estimation of lithium-ion batteries in electric vehicle under fast charging
    Maity, Jayabrata
    Khanra, Munmun
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [42] Fast Charging Control of Lithium-Ion Batteries: Effects of Input, Model, and Parameter Uncertainties
    Cai, Yao
    Zou, Changfu
    Li, Yang
    Wik, Torsten
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1647 - 1653
  • [43] Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries
    Yi Yang
    Lei Xu
    Shi-Jie Yang
    Chong Yan
    Jia-Qi Huang
    Journal of Energy Chemistry , 2022, (10) : 394 - 399
  • [44] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yi Yang
    XiaLin Zhong
    Lei Xu
    ZhuoLin Yang
    Chong Yan
    JiaQi Huang
    Journal of Energy Chemistry, 2024, 97 (10) : 453 - 459
  • [45] Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries
    Yang, Yi
    Xu, Lei
    Yang, Shi-Jie
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 394 - 399
  • [46] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yang, Yi
    Zhong, Xia-Lin
    Xu, Lei
    Yang, Zhuo-Lin
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 453 - 459
  • [47] Inorganic lithium-ion conductors for fast-charging lithium batteries: a review
    Xue, Ning
    Zhang, Chang
    Liu, Wei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024,
  • [48] A fast-validated computational model for cylindrical lithium-ion batteries under multidirectional mechanical loading
    Xia, Xue
    Tang, Liang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (03) : 4410 - 4428
  • [49] Electrochemical-Thermal Coupled Model of Lithium-Ion Batteries for Low Temperature Charging
    Wu, Peng
    Romberg, Jan
    Ge, Hao
    Zhang, Yakun
    Zhang, Jianbo
    PROCEEDINGS OF SAE-CHINA CONGRESS 2016: SELECTED PAPERS, 2017, 418 : 123 - 132
  • [50] Fast charging design for Lithium-ion batteries via Bayesian optimization
    Jiang, Benben
    Berliner, Marc D.
    Lai, Kun
    Asinger, Patrick A.
    Zhao, Hongbo
    Herring, Patrick K.
    Bazant, Martin Z.
    Braatz, Richard D.
    APPLIED ENERGY, 2022, 307