An online evaluation model for mechanical/thermal states in prismatic lithium-ion batteries under fast charging/discharging

被引:3
|
作者
Huang, Zhiliang [1 ]
Wang, Huaixing [2 ]
Zou, Wei [1 ]
Zhang, Rongchuan [3 ]
Wang, Yuhan [1 ]
Chen, Jie [2 ]
Wu, Shengben [2 ]
机构
[1] Hunan City Univ, Key Lab Energy Monitoring & Edge Comp Smart City, Yiyang 413002, Peoples R China
[2] Huizhou Liwinon New Energy Technol Co Ltd, Huizhou 516123, Peoples R China
[3] Wuhan Second Ship Design & Res Inst, Wuhan 430200, Peoples R China
关键词
Lithium-ion battery; Heat generation; Gas production; Mechanical stress; Online state evaluation; Fast charge/discharge; THERMAL-MODEL; EVOLUTION; CELLS;
D O I
10.1016/j.energy.2024.131877
中图分类号
O414.1 [热力学];
学科分类号
摘要
Conventional online evaluation methods for the mechanical/thermal behaviour of lithium-ion batteries fall short in terms of efficiency and accuracy, especially under extreme conditions coupling high-temperature and fast charging/discharging. This paper proposes an electrochemical/thermal/mechanical analytical model for prismatic lithium-ion batteries to assess their temperature, stress, deformation, and gas evolution. An electrochemical submodel is formulated, covering the lithium intercalation/deintercalation, solid-electrolyte interphase (SEI) decomposition/regeneration, and electrolyte decomposition. A thermal submodel is created to simulate heat transfer between the cell and its environment, considering reaction and Joule heating as heat sources. A mechanical submodel is developed to reveal the effects of nonlinear elastic constitutive properties and the mechanical/thermal/electrical states on cell deformation and stress, incorporating the reaction gas evolution. A coupled multidisciplinary analytical model is formed, using the state variables of temperature, stress, and deformation to link the submodels. The model 's performance was validated against numerical and experimental results under high-temperature charge/discharge cycle conditions, demonstrating efficiency at the level of seconds, temperature errors below 0.6 %, and pressure errors below 4.6 %. The advantages in efficiency, accuracy, and applicability highlight its excellent prospects in energy storage and electric vehicle applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Understanding thermal and mechanical effects on lithium plating in lithium-ion batteries
    Qiu, Yitao
    Zhang, Xiaoxuan
    Usubelli, Camille
    Mayer, Daniel
    Linder, Christian
    Christensen, Jake
    JOURNAL OF POWER SOURCES, 2022, 541
  • [22] Gradient porosity electrodes for fast charging lithium-ion batteries
    Yang, Jian
    Li, Yejing
    Mijailovic, Aleksandar
    Wang, Guanyi
    Xiong, Jie
    Mathew, Kevin
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Qingliu
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (22) : 12114 - 12124
  • [23] Direct venting during fast charging of lithium-ion batteries
    Li, Yalun
    Gao, Xinlei
    Wang, Huizhi
    Offer, Gregory J.
    Yang, Shichun
    Zhao, Zhengming
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2024, 592
  • [24] Fast Charging of Lithium-ion Batteries via Electrode Engineering
    Vishnugopi, Bairav S.
    Verma, Ankit
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [25] Fracture of electrodes in lithium-ion batteries caused by fast charging
    Zhao, Kejie
    Pharr, Matt
    Vlassak, Joost J.
    Suo, Zhigang
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [26] Effects of different charging and discharging modes on thermal behavior of lithium ion batteries
    Yang, Yun
    Wang, Zhirong
    Jiang, Juncheng
    Bian, Huan
    Mao, Ning
    Guo, Linsheng
    FIRE AND MATERIALS, 2020, 44 (01) : 90 - 99
  • [27] Adaptive online capacity prediction based on transfer learning for fast charging lithium-ion batteries
    Chen, Zhang
    Shen, Wenjing
    Chen, Liqun
    Wang, Shuqiang
    ENERGY, 2022, 248
  • [28] Enhancing fast charging performance of lithium-ion batteries: The role of operating temperature and charging rate
    Wang, Zheng
    Wu, Xiaolan
    Bai, Zhifeng
    Yang, Naixing
    Guo, Guifang
    Banjoko, Oluwatunmishe Sharon
    ELECTROCHIMICA ACTA, 2025, 511
  • [29] Enabling fast-charging of lithium-ion batteries through printed electrodes
    Wang, Guanyi
    Xiong, Jie
    Zhou, Bingyao
    Palaniappan, Valliammai
    Emani, Himanaga
    Mathew, Kevin
    Kornyo, Emmanuel
    Tay, Zachary
    Hanson, Tony Joseph
    Maddipatla, Dinesh
    Zhang, Guoxin
    Atashbar, Massood
    Lu, Wenquan
    Wu, Qingliu
    ELECTROCHIMICA ACTA, 2025, 514
  • [30] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179