A Method to Transform Datasets into Knowledge Graphs

被引:0
作者
Bravo, Maricela [1 ]
Barbosa, Jose L. [1 ]
Sanchez-Martinez, Leonardo D. [1 ]
机构
[1] Autonomous Metropolitan Univ, Ave San Pablo 420 Col Nueva El Rosario, Mexico City, Mexico
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023 | 2024年 / 824卷
关键词
Knowledge graphs; Medical datasets; Medical knowledge graphs; DECISION-SUPPORT-SYSTEM;
D O I
10.1007/978-3-031-47715-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs are representations of data and information about resources in a triplet-based format which are identifiable by unique IRIs, are reference enabled and expansible; these characteristics make knowledge graphs easy to upload and manage large volumes of data in an agile way. In this article we propose a semi-automatic method for transforming datasets into knowledge graphs. Specifically, we describe the method in the transformation of a set of files representing the logs of a medical research protocol whose purpose is to evaluate the efficacy of the use of continuous glucose monitors in patients with Type 1 diabetes. For evaluation purposes we implemented a set of programs to perform data extraction from the dataset, parsing, cleaning and finally the automatic population of the knowledge graph. The resulting graph has been evaluated by verifying its logical consistency.
引用
收藏
页码:536 / 554
页数:19
相关论文
共 50 条
  • [31] Emerging Exploration Strategies of Knowledge Graphs
    Al-Tawil, Marwan
    Dimitrova, Vania
    Thakker, Dhavalkumar
    Abu-Salih, Bilal
    IEEE ACCESS, 2023, 11 : 94713 - 94731
  • [32] Knowledge graphs for seismic data and metadata
    Davis, William
    Hunt, Cassandra R.
    APPLIED COMPUTING AND GEOSCIENCES, 2024, 21
  • [33] Flexible Queries over Knowledge Graphs
    Felix Yague, Jose
    Huitzil, Ignacio
    Bobed, Carlos
    Bobillo, Fernando
    KNOWLEDGE GRAPHS AND SEMANTIC WEB, KGSWC 2022, 2022, 1686 : 192 - 200
  • [34] Hierarchical Topic Modelling for Knowledge Graphs
    Zhang, Yujia
    Pietrasik, Marcin
    Xu, Wenjie
    Reformat, Marek
    SEMANTIC WEB, ESWC 2022, 2022, 13261 : 270 - 286
  • [35] Representation Learning on IoT Knowledge Graphs
    van der Weerdt, Roderick
    de Boer, Victor
    Daniele, Laura
    Siebes, Ronald
    van Harmelen, Frank
    METADATA AND SEMANTIC RESEARCH, MTSR 2024, 2025, 2331 : 44 - 57
  • [36] Ranking on Very Large Knowledge Graphs
    Desouki, Abdelmoneim Amer
    Roeder, Michael
    Ngomo, Axel-Cyrille Ngonga
    PROCEEDINGS OF THE 30TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA (HT '19), 2019, : 163 - 171
  • [37] Knowledge graphs: Construction, management and querying
    Kejriwal, Mayank
    Sequeda, Juan
    Lopez, Vanessa
    SEMANTIC WEB, 2019, 10 (06) : 961 - 962
  • [38] Semantic Knowledge Graphs for the News: A Review
    Opdahl, Andreas L.
    Al-Moslmi, Tareq
    Dang-Nguyen, Duc-Tien
    Ocana, Marc Gallofre
    Tessem, Bjornar
    Veres, Csaba
    ACM COMPUTING SURVEYS, 2023, 55 (07)
  • [39] Knowledge Graphs for Empirical Concept Retrieval
    Tetkova, Lenka
    Scheidt, Teresa Karen
    Fogh, Maria Mandrup
    Jorgensen, Ellen Marie Gaunby
    Nielsen, Finn Arup
    Hansen, Lars Kai
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT I, XAI 2024, 2024, 2153 : 160 - 183
  • [40] Hyperknowledge Graphs - Enabling Knowledge Graphs at scale with the Nested Context Model
    Cerqueira, Renato
    WEBMEDIA 2019: PROCEEDINGS OF THE 25TH BRAZILLIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2019, : 1 - 1