A Method to Transform Datasets into Knowledge Graphs

被引:0
作者
Bravo, Maricela [1 ]
Barbosa, Jose L. [1 ]
Sanchez-Martinez, Leonardo D. [1 ]
机构
[1] Autonomous Metropolitan Univ, Ave San Pablo 420 Col Nueva El Rosario, Mexico City, Mexico
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023 | 2024年 / 824卷
关键词
Knowledge graphs; Medical datasets; Medical knowledge graphs; DECISION-SUPPORT-SYSTEM;
D O I
10.1007/978-3-031-47715-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graphs are representations of data and information about resources in a triplet-based format which are identifiable by unique IRIs, are reference enabled and expansible; these characteristics make knowledge graphs easy to upload and manage large volumes of data in an agile way. In this article we propose a semi-automatic method for transforming datasets into knowledge graphs. Specifically, we describe the method in the transformation of a set of files representing the logs of a medical research protocol whose purpose is to evaluate the efficacy of the use of continuous glucose monitors in patients with Type 1 diabetes. For evaluation purposes we implemented a set of programs to perform data extraction from the dataset, parsing, cleaning and finally the automatic population of the knowledge graph. The resulting graph has been evaluated by verifying its logical consistency.
引用
收藏
页码:536 / 554
页数:19
相关论文
共 50 条
  • [1] Modularization Method to Reuse Medical Knowledge Graphs
    Bravo, Maricela
    Gonzalez-Villarreal, Darinel
    Reyes-Ortiz, Jose A.
    Sanchez-Martinez, Leonardo D.
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [2] A Simple Method for Inducing Class Taxonomies in Knowledge Graphs
    Pietrasik, Marcin
    Reformat, Marek
    SEMANTIC WEB (ESWC 2020), 2020, 12123 : 53 - 68
  • [3] Knowledge Graphs
    Hogan, Aidan
    Blomqvist, Eva
    Cochez, Michael
    D'Amato, Claudia
    de Melo, Gerard
    Gutierrez, Claudio
    Kirrane, Sabrina
    Labra Gayo, Jose Emilio
    Navigli, Roberto
    Neumaier, Sebastian
    Ngomo, Axel-Cyrille Ngonga
    Polleres, Axel
    Rashid, Sabbir M.
    Rula, Anisa
    Schmelzeisen, Lukas
    Sequeda, Juan
    Staab, Steffen
    Zimmermann, Antoine
    ACM COMPUTING SURVEYS, 2021, 54 (04)
  • [4] An Interpretable Fault Prediction Method Based on Machine Learning and Knowledge Graphs
    Ji, Zengyan
    Zhang, Liang
    Yan, Wei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14878 : 30 - 41
  • [5] Knowledge Graphs for Indication Expansion: An Explainable Target-Disease Prediction Method
    Gurbuz, Ozge
    Alanis-Lobato, Gregorio
    Picart-Armada, Sergio
    Sun, Miao
    Haslinger, Christian
    Lawless, Nathan
    Fernandez-Albert, Francesc
    FRONTIERS IN GENETICS, 2022, 13
  • [6] Molecular cartooning with knowledge graphs
    Santangelo, Brook E.
    Gillenwater, Lucas A.
    Salem, Nourah M.
    Hunter, Lawrence E.
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [7] Knowledge Graphs: Opportunities and Challenges
    Ciyuan Peng
    Feng Xia
    Mehdi Naseriparsa
    Francesco Osborne
    Artificial Intelligence Review, 2023, 56 : 13071 - 13102
  • [8] Introducing Subjective Knowledge Graphs
    Navarrete, Francisco J.
    Vallecillo, Antonio
    2021 IEEE 25TH INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE (EDOC 2021), 2021, : 61 - 70
  • [9] Knowledge Graphs: Opportunities and Challenges
    Peng, Ciyuan
    Xia, Feng
    Naseriparsa, Mehdi
    Osborne, Francesco
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) : 13071 - 13102
  • [10] On Reliability Scores for Knowledge Graphs
    Grubb, Thomas
    Andersen, Bill
    Alonso, Omar
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 84 - 88