共 50 条
Enhanced CO2 Capture through SAPO-34 Impregnated with Ionic Liquid
被引:6
作者:
Ye, Nannan
[1
]
Shen, Yusi
[1
]
Chen, Yifeng
[2
]
Cao, Jian
[1
]
Lu, Xiaohua
[1
,3
]
Ji, Xiaoyan
[4
]
机构:
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Inst Chem Ind Forest Prod, Key Lab Biomass Energy & Mat, Key & Open Lab Forest Chem Engn, Natl Engn Lab Biomass Chem Utilizat,CAF,SFA, Nanjing 210042, Peoples R China
[3] Suzhou Lab, Suzhou 215100, Peoples R China
[4] Lulea Univ Technol, Div Energy Sci, S-97187 Lulea, Sweden
来源:
基金:
中国国家自然科学基金;
关键词:
CARBON-DIOXIDE ADSORPTION;
METAL-ORGANIC FRAMEWORK;
REMOVAL;
FUNCTIONALIZATION;
EQUILIBRIUM;
SEPARATION;
EFFICIENT;
MEMBRANES;
GRAPHENE;
SORBENTS;
D O I:
10.1021/acs.langmuir.4c00466
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The concurrent utilization of an adsorbent and absorbent for carbon dioxide (CO2) adsorption with synergistic effects presents a promising technique for CO2 capture. Here, 1-butyl-3-methylimidazole acetate ([Bmim][Ac]), with a high affinity for CO2, and the molecular sieve SAPO-34 were selected. The impregnation method was used to composite the hybrid samples of [Bmim][Ac]/SAPO-34, and the pore structure and surface property of prepared samples were characterized. The quantity and kinetics of the sorbed CO2 for loaded samples were measured using thermogravimetric analysis. The study revealed that SAPO-34 could retain its pristine structure after [Bmim][Ac] loading. The CO2 uptake of the loaded sample was 1.879 mmol g-1 at 303 K and 1 bar, exhibiting a 20.6% rise compared to that of the pristine SAPO-34 recording 1.558 mmol g(-1). The CO2 uptake kinetics of the loaded samples were also accelerated, and the apparent mass transfer resistance for CO2 sorption was significantly reduced by 11.2% compared with that of the pure [Bmim][Ac]. The differential scanning calorimetry method revealed that the loaded sample had a lower CO2 desorption heat than that of the pure [Bmim][Ac], and the CO2 desorption heat of the loaded samples was between 30.6 and 40.8 kJ mol(-1). The samples exhibited good cyclic stability. This material displays great potential for CO2 capture applications, facilitating the reduction of greenhouse gas emissions.
引用
收藏
页码:9097 / 9107
页数:11
相关论文