MPINet: Multiscale Physics-Informed Network for Bearing Fault Diagnosis With Small Samples

被引:1
|
作者
Gao, Chao [1 ]
Wang, Zikai [2 ]
Guo, Yongjin [1 ]
Wang, Hongdong [1 ]
Yi, Hong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Ocean & Civil Engn, MOE Key Lab Marine Intelligent Equipment & Syst, Shanghai 200240, Peoples R China
[2] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Fault diagnosis; Training; Convolution; Vibrations; Kernel; Convolutional neural networks; Bearing fault diagnosis; multiscale; physics-informed; small-sample learning; CONVOLUTIONAL NEURAL-NETWORK; ELEMENT BEARINGS;
D O I
10.1109/TII.2024.3452174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning is increasingly prevalent in the bearing fault diagnosis, while the deficiency of fault samples could diminish the diagnostic efficacy of data-driven models that depend on extensive training data. For that, a novel multiscale physics-informed network (MPINet) is proposed for bearing fault diagnosis with small samples. Our fundamental idea is incorporating physical knowledge into the training process for enabling the model could better learn the fault features. To pursue this goal, a physics-informed block (PIB) is developed to extract fault features, which is customized for each failure mode. By this process, multiple independently trained PIBs encode the physical knowledge of their corresponding failure mode into the model, and thus yield multiscale fault features. Finally, the diagnosis result is obtained by using a new classifier head to merge these multiscale features. Extensive experimental results show that our MPINet can obtain superior diagnosis performance with small samples.
引用
收藏
页码:14371 / 14380
页数:10
相关论文
共 50 条
  • [1] Physics-Informed Time-Frequency Fusion Network With Attention for Noise-Robust Bearing Fault Diagnosis
    Kim, Yejin
    Kim, Young-Keun
    IEEE ACCESS, 2024, 12 : 12517 - 12532
  • [2] Multiscale Residual Attention Convolutional Neural Network for Bearing Fault Diagnosis
    Jia, Linshan
    Chow, Tommy W. S.
    Wang, Yu
    Yuan, Yixuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [3] Multiscale Residual Antinoise Network via Interpretable Dynamic Recalibration Mechanism for Rolling Bearing Fault Diagnosis With Few Samples
    Liu, Bin
    Yan, Changfeng
    Liu, Yaofeng
    Wang, Zonggang
    Huang, Yuan
    Wu, Lixiao
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31425 - 31439
  • [4] Multiscale Noise Reduction Attention Network for Aeroengine Bearing Fault Diagnosis
    Wang, Xing
    Zhang, Han
    Du, Zhaohui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Enhanced Lightweight Multiscale Convolutional Neural Network for Rolling Bearing Fault Diagnosis
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Zhu, Jing
    Liu, Yang
    Cheng, Qiang
    IEEE ACCESS, 2020, 8 (08): : 217723 - 217734
  • [6] Multiscale Margin Disparity Adversarial Network Transfer Learning for Fault Diagnosis
    Sun, Kuangchi
    Huang, Zhenfeng
    Mao, Hanling
    Yin, Aijun
    Li, Xinxin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] A Lightweight Network With Adaptive Input and Adaptive Channel Pruning Strategy for Bearing Fault Diagnosis
    Liu, Lei
    Cheng, Yao
    Song, Dongli
    Zhang, Weihua
    Tang, Guiting
    Luo, Yaping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [8] Inverse physics-informed neural networks for digital twin-based bearing fault diagnosis under imbalanced samples
    Qin, Yi
    Liu, Hongyu
    Wang, Yi
    Mao, Yongfang
    KNOWLEDGE-BASED SYSTEMS, 2024, 292
  • [9] A physics-informed deep learning approach for bearing fault detection
    Shen, Sheng
    Lu, Hao
    Sadoughi, Mohammadkazem
    Hu, Chao
    Nemani, Venkat
    Thelen, Adam
    Webster, Keith
    Darr, Matthew
    Sidon, Jeff
    Kenny, Shawn
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [10] A physics-informed feature weighting method for bearing fault diagnostics
    Lu, Hao
    Nemani, Venkat Pavan
    Barzegar, Vahid
    Allen, Cade
    Hu, Chao
    Laflamme, Simon
    Sarkar, Soumik
    Zimmerman, Andrew T.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191