Projection-based white noise and goodness-of-fit tests for functional time series

被引:1
作者
Kim, Mihyun [1 ]
Kokoszka, Piotr [2 ]
Rice, Gregory [3 ]
机构
[1] West Virginia Univ, Sch Math & Data Sci, Armstrong Hall, Morgantown, WV 26505 USA
[2] Colorado State Univ, Dept Stat, 102 Stat Bldg, Ft Colllins, CO 80523 USA
[3] Univ Waterloo, Dept Stat & Actuarial Sci, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Autoregressive process; Functional principal components; Goodness-of-fit; White noise; ARCH; MODELS;
D O I
10.1007/s11203-024-09315-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop two significance tests in the setting of functional time series. The null hypothesis of the first test is that the observed data are sampled from a general weak white noise sequence. The null hypothesis of the second test is that the observed data are sampled from a functional autoregressive model of order one (FAR(1)), which can be used as a goodness-of-fit test. Both tests are based on projections on functional principal components. Such projections are used in a great many functional data analysis (FDA) procedures, so our tests are practically relevant. We derive test statistics for each test that are quadratic forms of lagged autocovariance estimates constructed from principal component projections, and establish the requisite asymptotic theory. A simulation study shows that the tests have complimentary advantages against relevant benchmarks.
引用
收藏
页码:693 / 724
页数:32
相关论文
共 32 条
  • [1] Functional Generalized Autoregressive Conditional Heteroskedasticity
    Aue, Alexander
    Horvath, Lajos
    Pellatt, Daniel F.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 3 - 21
  • [2] A Simple Test for White Noise in Functional Time Series
    Bagchi, Pramita
    Characiejus, Vaidotas
    Dette, Holger
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (01) : 54 - 74
  • [3] Convex Banding of the Covariance Matrix
    Bien, Jacob
    Bunea, Florentina
    Xiao, Luo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 834 - 845
  • [4] BOSQ D., 2000, LECT NOTES STAT, V149, DOI [10.1007/978-1-4612-1154-9, DOI 10.1007/978-1-4612-1154-9]
  • [5] Brockwell PJ, 2016, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-3-319-29854-2
  • [6] Brockwell PJ., 1991, TIME SERIES THEORY M, DOI DOI 10.1007/978-1-4419-0320-4
  • [7] A portmanteau-type test for detecting serial correlation in locally stationary functional time series
    Buecher, Axel
    Dette, Holger
    Heinrichs, Florian
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2023, 26 (02) : 255 - 278
  • [8] Functional GARCH models: The quasi-likelihood approach and its applications
    Cerovecki, Clement
    Francq, Christian
    Hoermann, Siegfried
    Zakoian, Jean-Michel
    [J]. JOURNAL OF ECONOMETRICS, 2019, 209 (02) : 353 - 375
  • [9] A general white noise test based on kernel lag-window estimates of the spectral density operator
    Characiejus, Vaidotas
    Rice, Gregory
    [J]. ECONOMETRICS AND STATISTICS, 2020, 13 : 175 - 196
  • [10] Francq Christian., 2010, GARCH Models: Structure, Statistical Inference and Financial Applications, DOI DOI 10.1002/9780470670057