On the Self-Quenching of Relativistic Runaway Electron Avalanches Producing Terrestrial Gamma Ray Flashes

被引:3
作者
Gourbin, P. [1 ]
Celestin, S. [1 ]
机构
[1] Univ Orleans, CNRS, LPC2E, Orleans, France
关键词
Terrestrial gamma-ray flashes; runaway; simulation; electron avalanche; particle-in-cell; RREA;
D O I
10.1029/2023GL107488
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Terrestrial gamma ray flashes (TGFs) are short bursts of gamma rays occurring during thunderstorms. They are believed to be produced by relativistic runaway electron avalanches (RREAs). It is usually admitted that the number of high-energy electrons produced in the brightest TGFs remains mostly confined within a range from 1017 to 1019. To understand the constraints in the development of RREAs, we perform self-consistent simulations using a newly developed model with a finite acceleration region and various injection rates. We find that RREAs should naturally self-quench for a fixed total number of runaway electrons, and hence a fixed number of bremsstrahlung photons. From the idea that TGF sources quench themselves, we derive a simple equation controlling the total number of runaway electrons. In this framework, the existence of a saturation in the electron density discovered in a previous work places a lower limit on TGF durations. Terrestrial gamma ray flashes (TGFs) are short bursts of high-energy photons occurring during thunderstorms. They are believed to be produced by energetic electrons accelerating due to the intense electric field, forming a Relativistic Runaway Electron Avalanche (RREA). Discovered fairly recently, many of the TGF features remain unexplained. In this article, we aim to understand the constraint on the number of high-energy electrons produced during TGFs, that always remains confined between 1017 and 1019. Using a newly developed simulation model, we find that RREAs naturally quench themselves when the number of high-energy electrons and photons reach the range previously mentioned. Based on a limited number of fundamental processes, we were able to derive a simple equation controlling the total number of runaway electrons and deduce a lower limit for TGF durations. There is a maximum low-energy electron density reachable in Terrestrial Gamma Ray Flashe (TGF) sources when relativistic runaway electron avalanches (RREAs) reach saturation: nesat similar to 1015 ${n}_{e}<^>{\mathit{sat}}\sim 1{0}<^>{15}$ m-3 There exists a minimum TGF timescale equal to the RREA timescale: tau min similar to 1 mu s The self-quenching of the TGF sources implies a maximum number of electrons Ne similar to 1017
引用
收藏
页数:8
相关论文
共 46 条
[31]   Analysis of Individual Terrestrial Gamma-Ray Flashes With Lightning Leader Models and Fermi Gamma-Ray Burst Monitor Data [J].
Mailyan, B. G. ;
Xu, W. ;
Celestin, S. ;
Briggs, M. S. ;
Dwyer, J. R. ;
Cramer, E. S. ;
Roberts, O. J. ;
Stanbro, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (08) :7170-7183
[32]   New model of initial acceleration of electrons of terrestrial gamma-ray flashes with a hard spectrum [J].
Shmatov, Mikhail L. .
PHYSICS LETTERS A, 2015, 379 (20-21) :1358-1360
[33]   A study of thunderstorm microphysical properties and lightning flash counts associated with terrestrial gamma-ray flashes [J].
Barnes, D. E. ;
Splitt, M. E. ;
Dwyer, J. R. ;
Lazarus, S. ;
Smith, D. M. ;
Rassoul, H. K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (08) :3453-3464
[34]   Angular distribution of Bremsstrahlung photons and of positrons for calculations of terrestrial gamma-ray flashes and positron beams [J].
Kohn, Christoph ;
Ebert, Ute .
ATMOSPHERIC RESEARCH, 2014, 135 :432-465
[35]   The Emission of Terrestrial Gamma Ray Flashes From Encountering Streamer Coronae Associated to the Breakdown of Lightning Leaders [J].
Kohn, C. ;
Heumesser, M. ;
Chanrion, O. ;
Nishikawa, K. ;
Reglero, V ;
Neubert, T. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (20)
[36]   Evidence of a New Population of Weak Terrestrial Gamma-Ray Flashes Observed From Aircraft Altitude [J].
Bjorge-Engeland, I. ;
Ostgaard, N. ;
Sarria, D. ;
Marisaldi, M. ;
Mezentsev, A. ;
Fuglestad, A. ;
Lehtinen, N. ;
Grove, J. E. ;
Shy, D. ;
Lang, T. ;
Quick, M. ;
Christian, H. ;
Schultz, C. ;
Blakeslee, R. ;
Adams, I. ;
Kroodsma, R. ;
Heymsfield, G. ;
Ullaland, K. ;
Yang, S. ;
Qureshi, B. Hasan ;
Sondergaard, J. ;
Husa, B. ;
Walker, D. ;
Bateman, M. ;
Mach, D. ;
Bitzer, P. ;
Fullekrug, M. ;
Cohen, M. ;
Stanley, M. ;
Cummer, S. ;
Montanya, J. ;
Pazos, M. ;
Velosa, C. ;
van der Velde, O. ;
Pu, Y. ;
Krehbiel, P. ;
Roncancio, J. A. ;
Lopez, J. A. ;
Urbani, M. ;
Santos, A. ;
Neubert, T. ;
Gordillo-Vazquez, F. .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (17)
[37]   The Temporal Relationship Between Terrestrial Gamma-Ray Flashes and Associated Optical Pulses From Lightning [J].
Skeie, C. A. ;
Ostgaard, N. ;
Mezentsev, A. ;
Bjorge-Engeland, I ;
Marisaldi, M. ;
Lehtinen, N. ;
Reglero, V ;
Neubert, T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (17)
[38]   RAAD: A CubeSat-Based Soft Gamma-Ray Detector for the Study of Terrestrial Gamma-Ray Flashes and Other Short Timescale Phenomena [J].
Roberts, Mallory S. E. ;
Arneodo, Francesco ;
di Giovanni, Adriano ;
Al Qasimb, Ahlam ;
AlMannaei, Aisha ;
Almarri, Noora ;
Alkindi, Lolowa ;
AlKhouri, Fatema ;
Panicker, Philip ;
Ha, Sohmyung ;
Manenti, Laura ;
Bruno, Gianmarco ;
Torres, Rodrigo ;
Conicella, Valerio ;
Marpu, Prashanth ;
Thu Vu ;
Al Blooshi, Heyam .
SENSORS, SYSTEMS, AND NEXTGENERATION SATELLITES XXIII, 2019, 11151
[39]   Thunderstorms Producing Sferic-Geolocated Gamma-Ray Flashes Detected by TETRA-II [J].
Smith, Deirdre ;
Trepanier, Jill ;
Alnussirat, Samer T. ;
Cherry, Michael L. ;
Legault, Marc D. ;
Pleshinger, Donald J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (15)
[40]   Estimation of Radiation Doses Delivered by Terrestrial Gamma Ray Flashes Within Leader-Based Production Models [J].
Pallu, Melody ;
Celestin, Sebastien ;
Trompier, Francois ;
Klerlein, Michel .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (08)