On the Self-Quenching of Relativistic Runaway Electron Avalanches Producing Terrestrial Gamma Ray Flashes

被引:2
|
作者
Gourbin, P. [1 ]
Celestin, S. [1 ]
机构
[1] Univ Orleans, CNRS, LPC2E, Orleans, France
关键词
Terrestrial gamma-ray flashes; runaway; simulation; electron avalanche; particle-in-cell; RREA;
D O I
10.1029/2023GL107488
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Terrestrial gamma ray flashes (TGFs) are short bursts of gamma rays occurring during thunderstorms. They are believed to be produced by relativistic runaway electron avalanches (RREAs). It is usually admitted that the number of high-energy electrons produced in the brightest TGFs remains mostly confined within a range from 1017 to 1019. To understand the constraints in the development of RREAs, we perform self-consistent simulations using a newly developed model with a finite acceleration region and various injection rates. We find that RREAs should naturally self-quench for a fixed total number of runaway electrons, and hence a fixed number of bremsstrahlung photons. From the idea that TGF sources quench themselves, we derive a simple equation controlling the total number of runaway electrons. In this framework, the existence of a saturation in the electron density discovered in a previous work places a lower limit on TGF durations. Terrestrial gamma ray flashes (TGFs) are short bursts of high-energy photons occurring during thunderstorms. They are believed to be produced by energetic electrons accelerating due to the intense electric field, forming a Relativistic Runaway Electron Avalanche (RREA). Discovered fairly recently, many of the TGF features remain unexplained. In this article, we aim to understand the constraint on the number of high-energy electrons produced during TGFs, that always remains confined between 1017 and 1019. Using a newly developed simulation model, we find that RREAs naturally quench themselves when the number of high-energy electrons and photons reach the range previously mentioned. Based on a limited number of fundamental processes, we were able to derive a simple equation controlling the total number of runaway electrons and deduce a lower limit for TGF durations. There is a maximum low-energy electron density reachable in Terrestrial Gamma Ray Flashe (TGF) sources when relativistic runaway electron avalanches (RREAs) reach saturation: nesat similar to 1015 ${n}_{e}<^>{\mathit{sat}}\sim 1{0}<^>{15}$ m-3 There exists a minimum TGF timescale equal to the RREA timescale: tau min similar to 1 mu s The self-quenching of the TGF sources implies a maximum number of electrons Ne similar to 1017
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Self Consistent Modeling of Relativistic Runaway Electron Beams Giving Rise to Terrestrial Gamma-Rays Flashes
    Gourbin, P.
    Celestin, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2024, 129 (05)
  • [2] Soft collisions in relativistic runaway electron avalanches
    Celestin, Sebastien
    Pasko, Victor P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (31)
  • [3] Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges
    Liu, Ningyu
    Dwyer, Joseph R.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (05) : 2359 - 2376
  • [4] Terrestrial gamma-ray flashes
    Marisaldi, Martino
    Fuschino, Fabio
    Labanti, Claudio
    Tavani, Marco
    Argan, Andrea
    Del Monte, Ettore
    Longo, Francesco
    Barbiellini, Guido
    Giuliani, Andrea
    Trois, Alessio
    Bulgarelli, Andrea
    Gianotti, Fulvio
    Trifoglio, Massimo
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 720 : 83 - 87
  • [5] The First GECAM Observation Results on Terrestrial Gamma-Ray Flashes and Terrestrial Electron Beams
    Zhao, Y.
    Liu, J. C.
    Xiong, S. L.
    Xue, W. C.
    Yi, Q. B.
    Lu, G. P.
    Xu, W.
    Lyu, F. C.
    Sun, J. C.
    Peng, W. X.
    Zheng, C.
    Zhang, Y. Q.
    Cai, C.
    Xiao, S.
    Xie, S. L.
    Wang, C. W.
    Tan, W. J.
    An, Z. H.
    Chen, G.
    Du, Y. Q.
    Huang, Y.
    Gao, M.
    Gong, K.
    Guo, D. Y.
    He, J. J.
    Li, B.
    Li, G.
    Li, X. Q.
    Li, X. B.
    Liao, J. Y.
    Liang, J.
    Liang, X. H.
    Liu, Y. Q.
    Ma, X.
    Qiao, R.
    Song, L. M.
    Song, X. Y.
    Sun, X. L.
    Wang, J.
    Wang, J. Z.
    Wang, P.
    Wen, X. Y.
    Wu, H.
    Xu, Y. B.
    Yang, S.
    Zhang, B. X.
    Zhang, D. L.
    Zhang, F.
    Zhang, P.
    Zhang, H. M.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (14)
  • [6] Neutron production in terrestrial gamma ray flashes
    Carlson, B. E.
    Lehtinen, N. G.
    Inan, U. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [7] The observation of gamma ray bursts and terrestrial gamma-ray flashes with AGILE
    Del Monte, E.
    Barbiellini, G.
    Fuschino, F.
    Giuliani, A.
    Longo, F.
    Marisaldi, M.
    Mereghetti, S.
    Moretti, E.
    Trifoglio, M.
    Vianello, G.
    Costa, E.
    Donnarumma, I.
    Evangelista, Y.
    Feroci, M.
    Gallil, M.
    Lapshov, I.
    Lazzarotto, F.
    Lipari, P.
    Pacciani, L.
    Rapisarda, M.
    Soffitta, P.
    Tavani, M.
    Vercellone, S.
    Cutini, S.
    Boffelli, F.
    Bulgarelli, A.
    Caraveo, P.
    Cattaneo, P. W.
    Chen, A.
    Di Cocco, G.
    Gianotti, F.
    Labanti, C.
    Morselli, A.
    Pellizzoni, A.
    Perotti, F.
    Piano, G.
    Picozza, P.
    Pilia, M.
    Prest, M.
    Pucella, G.
    Rappoldi, A.
    Sabatini, S.
    Striani, E.
    Trois, A.
    Vallazza, E.
    Vittorini, V.
    Antonelli, L. A.
    Pittori, C.
    Preger, B.
    Santolamazza, P.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 630 (01) : 155 - 158
  • [8] Simulation of Terrestrial Gamma-Ray and Neutron Flashes
    Babich, L. P.
    Donskoi, E. N.
    Kudryavtsev, A. Y.
    Kudryavtseva, M. L.
    Kutsyk, I. M.
    COUPLING OF THUNDERSTORMS AND LIGHTNING DISCHARGES TO NEAR-EARTH SPACE, 2009, 1118 : 52 - 57
  • [9] Optical emissions associated with terrestrial gamma ray flashes
    Xu, Wei
    Celestin, Sebastien
    Pasko, Victor P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (02) : 1355 - 1370
  • [10] Characterizing the source properties of terrestrial gamma ray flashes
    Dwyer, Joseph R.
    Liu, Ningyu
    Grove, J. Eric
    Rassoul, Hamid
    Smith, David M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (08) : 8915 - 8932