Color optimization of a core-shell nanoparticles layer using machine learning techniques

被引:0
|
作者
Urquia, G. M. [1 ]
Inchaussandague, M. E. [1 ,2 ]
Skigin, D. C. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado, Buenos Aires, Argentina
[2] Univ Buenos Aires, CONICET, Inst Fis Buenos Aires IFIBA, Buenos Aires, Argentina
来源
RESULTS IN OPTICS | 2023年 / 10卷
关键词
Machine learning; Optimization; Structural color; INVERSE DESIGN; TRANSMISSION;
D O I
10.1016/j.rio.2022.100334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Neural networks were recently introduced in the field of nanophotonics as an alternative and powerful way to obtain the non-linear mapping between the geometry and composition of arbitrary nanophotonic structures on one hand, and their associated properties and functions on the other. Taking into account the recent advances in the application of the machine learning concept to the design of nanophotonic devices, we employ this tool for the optimization of photonic materials with specific color properties. We train a deep neural network (DNN) to solve the inverse problem, i.e., to obtain the geometrical parameters of the structure that best produce a desired reflected color. The analyzed system is a single layer of core-shell spheres composed of melanin and silica embedded in air, arranged in a hexagonal matrix. The network is trained using a dataset of the three CIE 1976 (L*a*b*) color coordinates obtained from the simulated reflectance spectra of a large set of structures. The direct problem is solved using the Korringa-Kohn-Rostoker method (KKR), widely applied to calculate the optical properties of sphere composites. The color optimization approach used in this work opens up new alternatives for the design of artificial photonic structures with tunable color effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Machine Learning Techniques for the Prediction of NoC Core Mapping Performance
    Reddy, B. Naresh Kumar
    Kar, Subrat
    2021 IEEE 26TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2021), 2021, : 153 - 156
  • [42] Multiplexed Surface Protein Detection and Cancer Classification Using Gap-Enhanced Magnetic-Plasmonic Core-Shell Raman Nanotags and Machine Learning Algorithm
    Rodriguez-Nieves, Alberto Luis
    Taylor, Mitchell Lee
    Wilson, Raymond
    Eldridge, Brinton King
    Nawalage, Samadhi
    Annamer, Assam
    Miller, Hailey Grace
    Alle, Madhusudhan Reddy
    Gomrok, Saghar
    Zhang, Dongmao
    Wang, Yongmei
    Huang, Xiaohua
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (02) : 2041 - 2057
  • [43] Wind turbine contaminant classification using machine learning techniques
    Cummins, S.
    Campbell, J. N.
    Durkan, S. M.
    Somers, J.
    Finnegan, W.
    Goggins, J.
    Hayden, P.
    Murray, R.
    Burke, D.
    Lally, C.
    Alli, M. B.
    Varvarezos, L.
    Costello, J. T.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2023, 210
  • [44] Investigation of Critical Variables of Core-Shell Polymer Lipid Hybrid Nanoparticles by Using Plackett-Burman Screening Design
    Patel, Ravi R.
    Kumar, Nagendra
    Khan, Gayasuddin
    Chaurasia, Sundeep
    Mishra, Brahmeshwar
    ADVANCED SCIENCE LETTERS, 2014, 20 (5-6) : 923 - 932
  • [45] Solar Radiation Prediction Using Machine Learning Techniques: A Review
    Obando, E.
    Carvajal, S.
    Pineda, J.
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (04) : 684 - 697
  • [46] Optimization of an Analysis Method for Diabetes Prediction Using Classical and Ensemble Machine Learning Techniques
    Naranjo, Edison
    Arguero, Berenice
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 527 - 536
  • [47] LEARNING DESIGN CONCEPTS USING MACHINE LEARNING TECHNIQUES
    MAHER, ML
    LI, H
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 1994, 8 (02): : 95 - 111
  • [48] Design of Terahertz InP pHEMT Using Machine Learning Assisted Global Optimization Techniques
    Wang, Jing
    Xue, Li-Yuan
    Liu, Bo
    Li, Chong
    2021 16TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC 2021), 2021, : 67 - 70
  • [49] Decision-Making Techniques for Credit Resource Management Using Machine Learning and Optimization
    Orlova, Ekaterina, V
    INFORMATION, 2020, 11 (03)
  • [50] Learning Process Analysis using Machine Learning Techniques
    Fernandez-Robles, Laura
    Alaiz-Moreton, Hector
    Alfonso-Cendon, Javier
    Castejon-Limas, Manuel
    Panizo-Alonso, Luis
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2018, 34 (03) : 981 - 989